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Abstract

The Tutte polynomial of a graph is revised and the chromatic polynomial is derived as a special

case of the partition function of the Potts model. We introduce the calculations of the computa-

tional complexity for these polynomials and we derive some calculations on recursive families of

graphs based on the literature, reproducing some of the simulations for the simple cases. Finally, we

discuss some possible links of this theory to recent results on quantum algorithms and topological

quantum computing.
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I. INTRODUCTION TO GRAPH THEORY

A. Graphs and Subgraphs

In mathematics and physics, there are several problems where one is interested in calcu-

lating a function on a graph,

G = G(V,E),

where V is the set of vertices (sites) and E is the set of edges (bonds) [1].

FIG. 1: (Right) Petersen Graph is an example of a 3-regular graph, with 10 vertices, 15 edges, and

where each vertex has 3 neighbors. (Left) It is also an example of a non-planar graph, i.e., there

are crossing edges [2].

Definition I.1 A spanning subgraph G′ of G is G′ = (V,E ′) with E ′ ⊆ E, i.e., it has the

same vertices and a subset of the edges of G [1].

Definition I.2 A connected graph with no cycles is a tree.

Definition I.3 A spanning subgraph G′ with no cycles is a spanning forest of G.

Definition I.4 The complete graph Kn is the graph with n vertices such that each pair of

vertices is connected by an edge, so E(Kn) =

(
n

2

)
.

Definition I.5 A loop is an edge that connects a vertex to itself. P (G, q) vanishes if G

contains one or more loops.

Definition I.6 A recursive family of graphs Gm is a family for which the (m+1)’th member

is obtained from the m’th member graph either by gluing on some fixed subgraph or by

cutting through the m’th member, inserting the subgraph and gluing the graph together.
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B. Graph Coloring

Graphic coloring, i.e., vertex coloring, is the assignment of colors to the vertex of a graph

in a such way that no two adjacent vertices share the same color.

Definition I.7 A q-coloring of a graph G is a function

σ : V (G)→ {1, 2, ..., q}

satisfying σ(i) 6= σ(j) for any edge E = i, j. The graph is said to be q-colorable if such a

function exists.

For instance, a graph is 2-colorable (bipartite) if it contains no odd cycle. The q-

colorability for any q larger than 3 is NP-complete (e.g., the question Does G have a

proper 3-coloring?) and finding the chromatic number is P-complete , i.e., it is unfeasible

to calculate it in an efficient way [35].

C. The Chromatic Polynomial

George Birkhoff introduced the chromatic polynomial in 1912 as an attempt to prove the

four color theorem [3]. He noticed the number of ways he could paint a map with at most q

colors exhibits polynomial dependence on q yielding some conclusions on q−colorability (he

hoped to be able to find an analytic proof that PG(4) > 0 for any planar graph G).

Definition I.8 The chromatic polynomial P (G, q) is the number of ways of assigning q

colors to the vertices of G such that no two adjacent vertices have the same color.

Definition I.9 The chromatic number χ(G) is the minimal q for which the graph is q-

colorable (i.e., the minimum number of colors needed for a proper coloring of G) and G is

q-chromatic if χ(G) = q,

χ(G) = min{P (G, q) > 0}.

For example, the path graph P3 on 3 vertices cannot be colored with 0 or 1 colors. With 2

colors, it can be colored in 2 ways. With 3 colors, it can be colored in 12 ways [5]. Another

example is the tree graph, where there are q choices of colors for an arbitrary first vertex

and then q − 1 choices for each subsequent vertex (see Fig. 3).
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FIG. 2: In 1852, Guthrie noticed that he never needed more than 4 colors on any map (planar

graph). The four color theorem was an open problem for almost a century until it was proven in

1976 by Appel and Haken [2].

FIG. 3: Coloring a tree graph: for any tree T on n vertices, one has PT (q) = q(q − 1)n−1 [4].

Definition I.10 Two non-isomorphic graphs may share the same chromatic polynomial. A

graph that is determined by its chromatic polynomial is said to be a chromatically unique

graph. Non-isomorphic graphs sharing the same chromatic polynomial are said to be chro-

matically equivalent.

Examples of classes of graphs and their chromatic polynomials are

• Complete graph can be obtained from the definition I.4, where we can write P (Kn, q) =

q(q − 1)...(q − n + 1) =
∏n−1

j=0 (q − j). For example, the triangle K3, P (K3, q) =

q(q − 1)(q − 2) and the chromatic number is χ(Kn) = n.

• Tree with n vertices, P (Tn, q) = q(q − 1)n−1.
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• Cycle of length n, P (Cn, q) = (q − 1)n + (−1)n(q − 1).

FIG. 4: All vertex colorings of vertex graphs with 3 vertices using q colors for q = 0, 1, 2, 3 [5].

D. Deletion-Contraction Property

A fundamental property of the chromatic polynomial is that it can be reduced to two

smaller graphs, resulting from deletion and contraction of an edge E respectively, giving an

algorithm to recursively calculate the chromatic polynomial for any graph.

Definition I.11 Let G−E be the graph G with the edge E deleted and G/E the graph with

E deleted and two vertices connected. The chromatic polynomial satisfies the recurrence

relation,

P (G, q) = P (G− uv, q)− P (G, uv, q), (1)

where u and v are adjacent vertices and G− uv is the graph with the edge uv removed.

An example of recurrence relations for chromatic polynomials for simple classes of graphs

is for the cycle graph,

Pn(Cn, q) = (1− 2)Pn−1(q) + (q − 1)Pn−2(q).
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FIG. 5: The deletion and contraction of an edge [6]. A bridge is an edge whose deletion separates

the graph. A loop is an edge with both incident to the same vertex.

E. The Tutte Polynomial

Tutte defined his two-variable dichromatic polynomial as a generalization of the chromatic

polynomial and the deletion-contraction argument.

Definition I.12 The Tutte-Whitney polynomial of a graph G and a spanning subgraph G′

is

T (G, x, y) =
∑
G′⊆G

(x− 1)k(G
′)−k(G)(y − 1)c(G

′), (2)

where c(G′) is the number of linearly independent cycles in G′ and

c(G) = E(G) + k(G)− n(G). (3)

Special cases of the Tutte polynomial yield the chromatic polynomial,

P (G, q) = (−q)k(G)(−1)n(G)T (G, x = 1− q, y = 0).

For a connected graph with vertices, the chromatic polynomial is related to the rank

polynomial and Tutte polynomial by

π(x) = (−1)n−1xT (1− x, 0).

F. Chromatic Roots

A root (or zero) of a chromatic polynomial is a value where PG(x) = 0. Chromatic roots

have been very well studied, e.g., recall that Birkhoffs original motivation for defining the
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chromatic polynomial was to show that for planar graphs, PG(x) > 0, for x > 3. If G is

an n-vertex graph then PG(z) has degree n and so this equation has n solutions over the

complex numbers. Fundamental questions are related to the search for absolute bounds on

the root-location and the search of this bounds in terms of graph parameters [2].

No graph can be 0-colored, so 0 is always a chromatic root. Only edgeless graphs can be

1-colored, so 1 is a chromatic root for every graph with at least an edge. On the other hand,

except for these two points, no graph can have a chromatic root at a real number smaller

than or equal to 32/27. This comes from a result of Tutte, connecting the golden ratio with

the study of chromatic roots. He showed that if G is a planar triangulation of a sphere then

P (Gn, φ) ≤ φ5−n.

Later, Farell observed that some zeros are more “popular” than others, specifically the

sequence {3/2± i
√

3/2, 2± i, 5/2± i
√

3/2, ...} [2].

For many years, it was thought that chromatic zeros were restricted to the right half-

plane Re(z) > 0. In 1999, Alan Sokal proved that chromatic zeros are dense in the whole

complex plane [10] [36].

While the real line thus has large parts that contain no chromatic roots for any graph,

every point in the complex plane is arbitrarily close to a chromatic root in the sense that

there exists an infinite family of graphs whose chromatic roots are dense in the complex

plane.

In the case of complex zeros, generalized theta graphs are graphs with two end points

connected via paths of varying lengths. Sokal also analytically proved that all the chromatic

roots of these graphs lie within a certain disc [10].

Recently, progress has been made in the theory of zeros of recursive families (recall from

Definition I.6 that a sequence of graphs {G1, ..., Gm} is a recursive family if P (Gm,m) =

f(P (Gm−1), ..., P (G1)), where f is some simple linear function). Chromatic zeros of recursive

families of graphs obey a limiting process and Shrock and Tsai [11] proved that a certain

family of graphs have zeros lying on circles and relate the results to a certain Potts model

(described in the next session). This paper provides an interesting link between chromatic

zeros and the Potts model on a certain class of graphs.
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G. Algorithm to Chromatic Roots

Computational problems associated with the chromatic polynomial are related to finding

the chromatic polynomial of a given graph PG, e.g., finding its coefficients evaluating PG(q)

at a fixed point q. When q is a natural number, this problem is viewed as computing the

number of q-colorings of a given graph. The time required for this classical calculation grows

exponentially with the number of vertices, n = |V |, i.e., O(2n). Quantum computing may

be able to reduce the calculations time to polynomial time [13].

The chromatic polynomial of a general graph can also be calculated with the deletion-

contraction recursion. In the worst case running time the algorithm runs in time within a

polynomial factor of

O(φn+m) = O
(1 +

√
5

2

)n+m

= O(1.6180)n+m,

where φ is the golden ratio and n and m are the number of nodes and edges respectively.

This algorithm also has an exponential complexity and is only practical for small graphs

[37]. The analysis can be improved to a polynomial time in some cases, with some spanning

trees as the the input graphs [12].

Another calculation methods include high and low temperature series expansions, which

enable one to calculate these quantities exactly for arbitrary large n for certain families of

graphs [1].
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II. INTRODUCTION TO THE POTTS MODEL

A. A Model for Interacting Spins

In Physics, ferromagnets can be thought of as a set of interacting spins on a crystalline

lattice. In the Potts model, each spin can assume one of the q possible states. If two

neighboring spins (joined by an edge E) are in the same state, it adds some value J to the

energy given by the Hamiltonian, H, of the system.

FIG. 6: (Left) The q-state Potts model, with q = 2, 3, 4 states and the coloring of the points with

q colors. (Right) The q = 2-state Potts model is known as the Ising Model. A sheet of metal

at low temperature is magnetized and when the temperature increases the magnetism decreases.

To model this behavior one assumes that (i) individual atoms have a spin (e.g., up and down),

(ii) neighboring atoms with different spins have an interaction energy (assumed constant), (iii) the

atoms are arranged in a regular lattice. [6]

Definition II.1 The Boltzmann weight of a configuration (assignments of states to spin) is

e−βH, where the probability of the configuration is proportional to its Boltzmann weight.

To form a probability distribution, one normalizes with the sum of the Boltzmann weights

of all configurations, i.e., the partition functions of the Potts model, which is a polynomial

in terms of q.

The behavior of the coupling J is determined by the willingness of spins to become aligned,

being ferromagnetic if J > 0 and antiferromagnet if J < 0. The interaction is strengthened

by decreasing the temperature to the limit T = 0, where only configurations with no
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adjacent spins sharing common state will have nonzero energy. The connection to

the chromatic polynomial is natural in this sense. Moreover, phase transitions are closely

related to the roots of this partition function, and therefore to the roots of the chromatic

polynomial.

B. The Potts Model Partition Function

Definition II.2 Let G be a graph and S the set of q elements called spins. A state of a

graph G is an assignment of a single spin to each vertex of the graph, where the Hamiltonian

measures the energy of this state.

Definition II.3 The Potts model on a graph G at temperature T (β = 1/kBT ) is related

to classical spin variables σi on each vertex i in V that can take values in {1, 2, ...q}, with

an interaction Hamiltonian,

H = −J
∑
Eij

δσiσj ,

and

− βH = K
∑
Eij

δσiσj . (4)

Definition II.4 The Potts model partition function is,

Z =
∑
{σi}

e−βH =
∑
{σi}

e
K

P
Eij

δσiσj . (5)

Writing ν = eK − 1 such that

eKδσiσj = 1 + (eK − 1)δσiσj ,

= 1 + νδσiσj , (6)

one has

Z(G, q, ν) =
∑
{σi}

∏
Eij

(1 + νδσiσj),

=
∑
G′⊆G

qk(G
′)vE(G′), (7)

where k and E are the number of connected components and edges in G′. This is the

Fortuin-Kasteleyn cluster representation and it shows that Z(G, q, ν) is a polynomial in q

and ν, since there is a 1− 1 correspondence between Z and the spanning subgraph G′.
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Example II.1: The Cyclic Group Cn

Let us see the case of the cyclic group, taking C3 as an example [1],

Z(C3, q, ν) =
∑
{σi}

∏
Eij

(1 + νδσiσj),

=
∑
σi

(1 + νσσ1σ2)(1 + νσσ2σ3)(1 + νσσ3σ1)

= 1 + ν(δσ1σ2 + δσ2σ3 + δσ3σ1) + ν2(δσ1σ2δσ2σ3 + δσ2σ3δσ3σ1 + δσ3σ1δσ1σ2)

+ ν3(δσ1σ2δσ2σ3δσ3σ1),

= q3 + 3q2ν + 3qν2 + qν3,

= (q + ν)3 + (q − 1)ν3. (8)

The generalization proceeds naturally,

Z(Cn, q, ν) = (q + ν)n + (q − 1)νn

C. The Potts Model Partition Function and the Tutte Polynomial

If we generalize the regular lattice to an abstract, the q-state Potts model partition

function is an evaluation of the Tutte Polynomial, and the Potts is equivalent to the Tutte

polynomial if both q and the temperature are viewed as indeterminate variables [7]. Let

x = 1 +
q

ν
,

and

y = ν + 1 = eK ,

so

q = (x− 1)(y − 1),

and

ν = y − 1.

We use n(G′) = n(G) and similar relation given in Eq. 3,

c(G′) = E(G′) + k(G′)− n(G),
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to write the Tutte polynomial of a graph G, from Eq. 2,

T (G, x, y) = (x− 1)−k(G)
∑
G ⊆G

(x− 1)k(G
′)(y − 1)c(G

′),

= (x− q)−k(G)
∑
G′⊆G

( q
ν

)k(G′)

νE(G′)+k(G′)−n(G),

= (x− 1)−k(G)(y − 1)−n(G)
∑
G′⊆G

qk(G
′)νE(G′),

= (x− 1)−k(G)(y − 1)−n(G)Z(G, q, ν). (9)

This equivalence connects statistical mechanics and mathematical graph theory [1].

Definition II.5 The Potts parameters ν and q are physical parameters when [18]:

• q is an integer larger than 0, and for all edges νE > 1; or

• q > 0 and for all edges νE > 0.

Example II.2: Partition function and Tutte Polynomial for a Tree Graph with

n vertices.

From Eq. 7, we can write for Tn,

Z(Tn, q, ν) = q(q + ν)n−1,

=
( q
ν

)k(G)

νnT (G, x, y),

= qνn−1T (G, x, y),

= qνn−1
[
1 + (q/ν)

]n−1

,

= qνn−1xx−1,

and

T (Tn, x, y) = xn−1,

where from the Definition I.10, we observe that two different graphs can have the same

Tutte polynomial and Potts partition function. Setting ν = −1, gives back the chromatic

polynomial,

P (Tn, q) = q(q − 1)n−1.
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Example II.3: Partition function and Tutte Polynomial for a Cycle Graph

with n vertices.

Following the same steps as the previous example, now for Cn, with x − 1 = q/ν and

q = (x− 1)(y − 1), one has

Z(Cn, q, ν) = (q + ν)n + (q − 1)νn,

= νn
[(

1 +
q

ν

)n
+ (q − 1)

]
,

= νn
[
xn + q − 1

]
,

= qνn−1
[xn + q − 1

x− 1

]
,

and using the expansion
n−1∑
j=1

xj =
xn − x
x− 1

the Tutte polynomial is

T (Cn, x, y) =
[xn + xy − y − x

x− 1

]
,

= y +
n−1∑
j=1

xj,

and we can recover its chromatic polynomial setting again ν = −1.

D. The Antiferromagnetic Potts Model

Special cases of the Tutte polynomial yield some graph-theoretic functions of interest in

Physics, such as when ν = −1 (y = 0) and one recovers the chromatic polynomial of the

antiferromagnet Potts model (see Fig. 7).

For this case, one considers the limit T → 0 and K → −∞ (with K = βJ and J < 0) and

ν = eK−1→ −1. The only spin configuration that contributes is the one having an adjacent

spin with different value. This results on the T = 0 limit of the Potts antiferromagnetic

partition function given by the following chromatic polynomial

Z(G, q,−1) = P (G, q) = (−1)k(G)(−1)n(G)T (G, 1− q, 0).
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FIG. 7: The q-state Potts model models a physical system as collection of interacting spins, each

taking on one of q distinct values, and in this case, located on a regular lattice grid. Every edge

E contributes with 1 + ν if it joins equal spins. If one writes ν = −1 for every edge, one gets the

zero temperature limit of the antiferromagnetic Potts model, ZG(q,−1) = PG(q). (Left) The lattice

may be periodic. (Right) The q = 2 case is known as the Ising Model [5]

E. Exact Calculations on Recursive Graphs for the Potts Partition Function

In the end of the last session we have learned that we can use the deletion-contraction

recursion to calculate family of graphs. It is possible to use the same logic to rewrite the

Eq. 1 for the Potts partition function from Eq. 5,

Z(G, q, ν) = Z(G− E, qν) + νZ(G/E, q, ν),

with two possibilities for the two spins on the vertices joined by the edge E: (i) either they

are different, so Z is the same as if the edge was moved, (ii) or they are the same so it is

summed by the term νδσiσj , (see Fig. 8).

The general calculation of Z(G, q, v) for an arbitrary graph G and arbitrary values of q

and ν, which is the calculation of T (G, x, y) for an arbitrary graph G and values of x and

y, takes a time ∝ O(en(G)) or ∝ O(ee(G)). Although Z(G, q, ν) satisfies the above deletion-

contraction relation, this again does not reduce the complexity of the calculation, but for

some graphs, this enables to calculate exactly in the closed form, avoiding exponential growth

of the time required [1].
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FIG. 8: Calculation of the Tutte polynomial for C4 using the deletion-contraction propriety [7].

First we start with G = C4 and Z(C4, q, ν) = (q + ν)4 + (q − 1)ν4. Subtracting any edge gives

C4 − E = T4, where T (T4, x, y) = x3, and Z(T4, q, ν) = q(q + 3)3. Contracting on E gives

C4/E = C3, where T (C3, x, y) = x + x2 + y , and Z(C3, q, ν) = (q + ν)3 + (q − 1)ν3. Summing

these two results returns the the Tutte polynomial of C4, i.e., T (C4, x, y) = x+ x2 + x3 + y.

F. Thermodynamics Functions and Phase Transition

The thermodynamic functions, e.g., internal energy, specific heat, entropy, free energy,

can be derived from the Potts model partition function, Z(G, q, ν) [8].

A phase transition in a physical system occurs when continuous variation in a control

parameter yields a discontinuity in its observed behavior. Statistical physicists are interested

in complex zeros because a phase transition can only occur at a real limit point of the

complex zeros of the partition function. Hence a zero-free region for a family of graphs

provides evidence that phase-transitions cannot occur in that region of parameter space

- such theorems are called Lee-Yang theorems [5]. Phase transitions correspond to the

accumulation points of roots of the chromatic polynomial in the infinite volume limit.

We consider connected graphs G without loops or multiple bonds and denote the number

of vertices as n = V (G), the edges as E(G), and the chromatic number as χ(G). Based on

many results from the literature, we consider the infinite length of a strip graph, denoted

as {G} = limn→∞G [12] [31] [32] [33]. For arbitrary strip length Lx = m, we consider the

limit n → ∞ obtained by taking the length Lx → ∞. For a given type of strip graph, we

can denote this as G and define a reduced free energy (per site) of the Potts model,

f(G, q, ν) = lim
n→∞

1

n
lnZ.
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The ground state degeneracy (per site) of the Potts antiferromagnet is given by

W (G, q) = lim
n→

P (G, q)1/n,

with associated ground state entropy S = kB lnW .

As we have seen in the section I F, since P (G, q) is a polynomial, it is of interest to

analyze its real and complex zeros (chromatic zeros). Moreover, important results comes

from analyzing the zeros of Z(G, q, ν) in the q plane for fixed ν, and in the v plane for fixed

q, such as the study of the behavior of these zeros in the limit n → ∞. We find that in

this limit zeros accumulate to form certain curves and line segments, generically denoted as

the loci Bq [38]. These are determined by the condition that two dominant λs are equal in

magnitude, which defines algebraic curves.

Following some of the Mathematica’s notebooks with the transfers matrices given by the

above literature (arxiv files), we reproduced one case of Bq for one familiy of graphs, for

the square lattice (the code source is attached in the end of this paper). The families of

graphs may depend on several parameters (e.g., width, length, number of homeomorphic

expansions, etc.), and there can be several ways in which one can obtain the limit n→∞.

We concentrate on one parameter, such as the length of a strip of a regular lattice, so that

n is a linear function of m. We take the width to be fixed and the length to be variable and

arbitrarily great.

FIG. 9: Locus Bq in the q plane for n→∞ limit for the square lattice with Ly = 5 strip.
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III. SOME CONNECTIONS TO QUANTUM COMPUTING

A. Partition Function Algorithm (Superpolynomial Speed)

As we have seen in the last section, the computation of Tutte polynomials is a #P -hard

problem [39]. This problem cannot be confronted using standard Turing machines and the

corresponding classical computers. It is believed that quantum computers and specifically

topological quantum computers [15] [16] are more efficient than classical computers when

Tutte computations are involved.

For a classical system with a finite set of states S the partition function is given by the

general (statistical mechanics) form of equation 4,

Z =
∑
s∈S

e−E(s)/kBT ,

where T is the temperature and kB is Boltzmann constant. Every thermodynamic quantity

can be calculated by taking an appropriate partial derivative of the partition function. As

we have seen in the last sessions, the partition function of the Potts model is a special case

of the Tutte polynomial.

In 2007, a topological quantum algorithm, the Aharonov-Arab-Ebal-Landau (AAEL al-

gorithm), was proposed for the approximated computation of numerical evaluations of the

Tutte polynomial for any given network [17]. This includes an additive approximation of

the partition function of the Potts model for any weighted planer graph at any temperature,

as well as approximations to many other combinatorial graph properties described by the

Tutte polynomial [18].

They make the following claim: There exists an efficient quantum mechanical algorithm

for the following problem. The input is a planar graph, with (complex) weights on the edges,

and a (complex) number q. The output is an additive approximation of the (multivariate)

Tutte polynomial of the graph with those weights. However, their methods of proving uni-

versality seem to be not applicable for a physical Potts model (see Definition II.5) and they

claim that the characterization of the quality of the algorithm for the Potts parameters is still

an open problem, together with finding other non-unitary [40] representations of algebras

to derive efficient quantum algorithms for combinatorial problems.
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B. Knot Invariants Algorithms (Superpolynomial Speed)

A special case of the previous session was the work by of Aharonov, Jones and Landau

regarding the Jones polynomial [18]. A special case of the multivariate Tutte polynomial of

planar graphs is the Jones polynomial, where one can translate a planar graph to a knot in

the 3D space. For a particular choice of weights and q, there is a simple connection between

the Tutte polynomial of the original graph and the Jones polynomial of the knot, i.e., Jones

polynomial is a partition function in Potts model.

Consider a braid and represent it in an algebra spanned by objects similar to braids

but with no crossings. This algebra is called the Temperley Lieb algebra [20] (in 1970,

Temperley and Lieb also claimed that low temperature solutions of 2D-Potts model are

related to the chromatic polynomial). The works results in an efficient quantum algorithm

that approximates the Tutte Polynomial to an additive approximation (the norm of the

overall product of operators is equal to the value of the Tutte polynomial). In [18], a

quantum algorithm was developed to approximate the overall norm, to inverse polynomial

times the scale.

Mike Freedman et al. showed that finding a certain additive approximation to the Jones

polynomial of a braid at ei2π/5 is a BQP-complete problem [14] [41]. Some connections

between these approaches are discussed in by D. Lidar [21]. In knot theory one seeks to

construct a topological invariant which is independent of the knot shape, lending to a number

of knot polynomials (e.g., the Jones polynomials). Two knots are topologically equivalent if

they have the same knot polynomial. There is a connection between knot polynomials and

the partition function of the Potts model. Considering a knot in 3D-space (e.g., a piece of

rope). The knot can be projected onto the 2D plane where the topological information is

contained in the pattern of crossings, which is given by the Betti number, bk = ±1, (see Fig.

10).

The connection to the Potts model is made by assigning random values to the crossing

variables, bk. In this case, the Kauffman polynomial is identical to the Potts Model partition

function [22] (and the Jones and Kauffman polynomials coincide with the polynomial variable

qJon = q
1/4
Kau). Therefore, the equivalence of the Kauffman polynomial to the Potts partition

function is established when one assigns the Potts variables q and βJij the values

q = (q2
Kau + q−2

Kau)
2,
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FIG. 10: The definition of crossing variables for knots, given by the Betti number [21].

and

βJij = ln(−q4bij
Kau).

Solving for qKau give

qKau = ±[(q1/2 ± (q − 4)1/2)/2]1/2.

Thus βJij can be real only for q ≥ 4. In the Ising case (q = 2), this value is complex,

which implies complex-valued estimation of the polynomial.

Again, a physically unsatisfactory aspect of the knots-Potts connection is that the

(complex-valued) temperature cannot be tuned independently from the bonds Jij, which

however does not matter from the computational complexity perspective.

Additional algorithms for estimating partition functions on quantum computers are given

in [23], [24], [25], and [26]. In [24] a BQP-completeness result is presented, where the

energies are allowed to be complex. In addition, an efficient quantum algorithm for the

exact evaluation of either the fully ferromagnetic or anti-ferromagnetic q-state Potts partition

function Z for a family of graphs is related to irreducible cyclic codes (which is related to

the evaluation of the Jones and Tutte polynomials).

C. Applications on Topological Quantum Computing

A 2D quantum system with anyonic excitations can be considered as a quantum computer. Unitary

transformations can be performed by moving the excitations around each other. Measurements can be performed

by joining excitations in pairs and observing the result of fusion. Such computation is fault-tolerant by its

physical nature. (Kitaev, 2008)

The great promise of quantum computers has to be worked against the difficulty of
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building them. A fundamental challenge is to defeat decoherence and errors. Topological

quantum computation is an approach that employs many-body physical systems with the

unique property of encoding and processing quantum information in a naturally fault-tolerant

way [28] [15] [16].

A topological quantum computer employs 2D quasiparticles, i.e., anyons, whose world

lines cross over one another to form braids in a 3D spacetime. The application of topology

theory is seen in many cases such as the non-trivial example of the Temperle-Lieb recoupling,

the so-called Fibonacci model, and the quantum computation of colored Jones polynomials

and the Witten-Reshetikhin-Turaev Invariants [16] [27].
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IV. DISCUSSION

In section I, we have introduced some aspects of the graph theory and discussed the

chromatic and Tutte polynomials. In section II, the Potts Model were introduced and

the exact calculations of the Potts model partition function Z(G, q, v) for arbitrary q and

temperature variable and equivalent Tutte polynomial T (G, x, y) for arbitrary x and y on

recursive families of graphs.

In section III, we proceed with an attempt of connecting the above theory to some recent

results on quantum computing. In any of these subjects, the literature available is very

extensive and dense. The discussion here intends to only give a very general idea of the field.

Much more study and further derivations must be done before one acquires a reasonable

understanding of the subject. Due to its scope, some of the following aspects were left for

future studies:

• expanding the simulations for the exact calculations of the Potts model partition for

arbitrary q and temperature variable, and equivalent Tutte polynomial, on recursive

families of graphs;

• developing the mathematical aspects on graph theory regarding the Tutte Polynomials

and the Chromatic Polynomials and relations to other invariants such as the Jones

and Kaufman;

• explicitly deriving detailed proves of the complexity time relation for many of the cited

quantum algorithms.

An interesting subject left out of this paper is, for instance, the study of the Kramers-

Wannier duality of two-dimensional classical lattice models and the topological symmetry

of interacting anyonic chains. This has applications to both classical and quantum lattice

models. In classical models, this allows one to generalize duality to essentially any lattice

(restricted) height model with an integrable critical point. In quantum models, this allows

one to find ground states with non-abelian topological order, and moreover construct rela-

tively simple local Hamiltonians with such ground states. Such models are also of interest

for topological quantum computation.
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Another current related field of studies is the categorification of the chromatic polynomial

and its relations to relationship to the Yamada polynomial [34]. A very special case of spin

networks (2-colored spin networks) is closely related to the chromatic polynomial for graphs.

The study of the categorification of the chromatic polynomial is the simplest case for a

quantum 3-manifold invariant.

The study of categories, and the possibility of developing higher dimension categories

[30], have also implications in topological quantum computing. Examples of the connection

of the field can be seen at [29], for example.
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