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Homework #1: Integration & Differentiation

Marina von Steinkirch

February 20, 2013

Q.1 (Numerical Derivatives) Exploration of two different approaches to derive
numerical derivatives:

(a) Derive a second-order accurate one-sided derivative at x = xi using the function
value at the 3 points xi, xi+1, and xi+2, assuming that the spacing, ∆x, is constant.

Consider a discrete set of data represented by three points xi, xi+1, and xi+2 and with a
constant spacing

∆x = xi+2 − xi+1 = xi+1 − xi,

and
2∆x = xi+2 − xi.

Consider that the function we want to calculate the derivative (at xi) is known at the grid
points:

fi = f(xi),

fi+1 = f(xi+1) = f(xi + ∆x),

and
fi+2 = f(xi+2) = f(xi + 2∆x).

The mathematical definition of the derivative of a function f(x), where h is the step size, is

df(x)
dx

= lim
h→0

f(x+ h)− f(x)
h

. (1)
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For the three points in consideration, we could write a first-order approximation using two
points at each time, resulting on the two one-sided differences:

df(x)
dx

∣∣∣∣∣
xi

∼ f(xi+2)− f(xi)
2∆x

,

and
df(x)
dx

∣∣∣∣∣
xi

∼ f(xi+1)− f(xi)
∆x

.

However, these approximations do not give us any instruction of how to relate together all the
information that the function f(x) at the three points carries (i.e., this is a 3-point stencil1).
In other words, the higher accuracy comes from the addition of one more point to the simple
two-points difference, and it is clear that in the equations above the first approximation loses
the information contained in the function at the point xx+2 and the second approximation
loses the information that the function at xx+1 carries.

To evaluate a second-order accurate derivative with three points, we can use the definition of
the Taylor expansion for a function f(x) that is infinitely differentiable in a neighborhood of
a point h:

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +O(h3). (2)

For the three points in consideration, the Eq. 2 becomes

f(xi+2) = f(xi + 2∆x) = f(xi) + f ′(xi)(2∆x) +
f ′′(xi)

2
(2∆x)2 +O((2∆x)3),

and

f(xi+1) = f(xi + ∆x) = f(xi) + f ′(xi)∆x+
f ′′(xi)

2
∆x2 +O(∆x3).

We can now set a computed derivative, f ′(xi), by rewriting the equations above as

f ′(xi) =
f(xi+2)− f(xi)

2∆x
− f ′′(xi)

2
(2∆x) +O((2∆x)2).

1The range of points involved is called the stencil.
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and

f ′(xi) =
f(xi+1)− f(xi)

∆x
− f ′′(xi)

2
(∆x) +O(∆x2).

Rewriting the above (second) equation in a more suitable way (multiplying both sides by
×[−2] and the first term in the right side by ×[2/2]),

−2f ′(xi) =
−4f(xi+1) + 4f(xi)

2∆x
+
f ′′(xi)

2
(2∆x) + (−)O(2∆x2),

and adding both the relations,

−f ′(xi) =
f(xi+2)− f(xi)− 4f(xi+1) + 4f(xi)

2∆x
+ (2)O(∆x2),

results on the second order accurate first derivative at xi:

f ′(xi) =
−f(xi+2) + 4f(xi+1)− 3f(xi)

2∆x
+O(∆x2).

The last term in the above equation, O(∆x)2, is the grid size, denoting the (leading term in)
truncation error (the order of accuracy in the error representation). Since this term gives an
error estimation, any multiplicative constant is absorbed, i.e., the order of the term is the
only meaningful information. This fact can be seen when we represent the methods developed
in this exercise for some analytic function (e.g., f(x) = sin(x)), as in the Fig. 1 (motivated
by the same discussion in class).

(b) When deriving the Simpson’s rule, we can obtain a quadratic function passing through
f(x) at the points x0, x1 and x2,

f(x) =
f0 − 2f1 + f2

2∆x2
(x− x0)2 +

−f2 + 4f1 − 3f0

2∆x
(x− x1) + f0. (3)

Show that

(i) The derivative of f(x) at point x1 recovers the centered difference formula.
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Figure 1: Comparison of the first derivative of f(x) = sin(x) at the point x = 1 to many orders of
accuracy and to centered and one-sided (right and left) differences.

The derivative of Eq. 3 is

df(x)
dx

=

(
f0 − 2f1 + f2

2∆x2

)
(2)(x− x0) +

(
−f2 + 4f1 − 3f0

2∆x

)
, (4)

which calculating at the point x1 and making ∆x = x1 − x0 gives the second order
centered difference formula,

f ′(x1) =
f2 − f0

2∆x
.
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(ii) The derivative of f(x) at x0 gives the same expression from part (a), but now
right-sided.

When calculating the Eq. 4 at the point x = x0, the first right-side term vanishes,
resulting in a similar expression obtained in the item (a) (but right-sided if we say
x0 → xi+2),

f ′(x0) =
−f2 + 4f1 − 3f0

2∆x
.
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Q.2 (Derivative Error Estimates) Starting with the second-order centered difference
equation (as in the item Q.1-b-i),

∆1(h) =
f(x+ h)− f(x− h)

2h
; (5)

write a program to compute the numerical derivative of f(x) = sin(x) at x = 1. By
comparing ∆1(h) and ∆1(h/2), reach relative error ε = 10−7. In addition, return the
Richardson extrapolated value of f ′(x), which is O(h4).

A real number x has a machine representation given by

fl(x) = x(1 + ε),

with a given precision |ε| ≤ εM , where εM is the machine precision (i.e., single:10−7, double:10−16).
Therefore, we cannot represent all decimal numbers with an exact binary representation in a com-
puter (e.g., the binary representation of the decimal 0.1). This is called the roundoff error.

To numerically calculate derivatives of a function f(x) to a set of data, we can interpolate the
data to a uniform grid with 2 ≤ i ≤ n points, with convenient distances, h, between each of them.
In this case, a truncation error is also introduced, so that the total absolute error is

εtotal =

∣∣∣∣∣f ′(x)− f̄(xi+1)− f̄(xi)
∆x

∣∣∣∣∣ ≤ |f
′′ |h
2

+
2εM
h
, (6)

with f̄(xi) being an approximation of f(xi). The first term in the right-side is the truncation error,
and the second term is the roundoff error.

When the function f(x) is available analytically we can make estimates of error and control
the accuracy in an adaptive scheme. With the Eq. 5, we can chose values for h that make the
comparison of ∆1(h) to ∆1(h/2) close to the desired error, which in this case is εdesired ∼ 10−7.
This is the same order of a single precision machine error, so that calculating our machine error
gives εroundoff ∼ 2.22× 10−16 � εdesired.

To estimate the first derivative (and respective errors) we iteratively build more accurate ap-
proximations, adding to our approximation of f ′(x) higher order of Taylor expansion terms. These
higher order terms can be calculated at h and h/2 (i.e., in between grid intervals), resulting on the
Richardson extrapolation of the value of f ′,

f ′R = −∆1(h)− 4∆1(h/2)
3

+O(h4).
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The errors calculated in this approximation can be absolute,∣∣∣f ′(x)− f ′R
∣∣∣ ≤ εa,

relative, ∣∣∣∣∣f ′(x)− f ′R
f ′(x)

∣∣∣∣∣ ≤ εr,
and a truncation error O(h4),

h2 ×
∣∣∣∆1(h)−∆1(h/2)

∣∣∣ ≤ εt ∼ εdesired.

For the derivative of f(x) = sin(x) at x = 1, Fig. 2 shows a comparison among these three
errors versus the grinding size (h) and the iteration size (n).

Figure 2: (left) Absolute, relative, and truncation errors versus the grinding size h, for the calcu-
lation of the first order derivative of f(x) = sin(x) at x = 1 by Richardson extrapolation method.
(right) Same calculations but for the number of iterations n.
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Q.3 (Simpson’s Rule) In class we derived the compound version of the Simpson’s
rule, which we integrate over pairs of slabs/intervals:

We want to solve numerically the integral

I =
∫ b

a
f(x)dx.

The simplest case is by a piecewise constant interpolation, i.e., the midpoint rule,

Im ∼ (b− a)f
(a+ b

2

)
.

A little better approximation is by a piecewise linear interpolation, i.e., the trapezoid rule,

It ∼ (b− a)
f(b) + f(a)

2
,

The accuracy is better for higher-order interpolating polynomials. If we try to approximate the
integral by a parabola, with δ = (b− a)/2,

f(x) = A(x− x0)2 +B(x− x1) + C, (7)

with
A =

f0 − 2f1 + f2

2δ2
,

B = −f2 − 4f1 + 3f0

2δ
,

and
C = f0,

we derive the Simpson’s rule,

IS ∼
∫ x2

x0

[
A(x− x0)2 +B(x− x0) + C

]
dx,

∼ δ

3

(
f0 + 4f1 + f2

)
.

These simple integration methods are not accurate for a larger domain, i.e., when [a, b] is large.
In principle, we could keep adding higher order polynomials terms to get more accuracy. However,
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a better options is called compound integration, which breaks the domain into sub-domains and use
the integration rules in each of the respective slabs,

I =
∫ b

a
f(x)dx =

N−1∑
i=0

∫ xi+1

xi

f(x)dx.

The compound Simpson’s integral method is given by

IcS =
h

3

N/2−1∑
i=0

(
f2i + 4f2i+1 + f2i+2

)
+O(h4),

which in order to pair up all the slices, we have to have an even number of slices.

(a) Imagine that you want to integrate f(x) over [a, b], and have divided the domain
into an odd number, N, slabs/intervals, with the function specified at the points
x0, ..., xN. In this case, you would integrate all the pairs of slabs up until the
last slab. For the remaining odd slab, [xN−1, xN ], show that a Simpson’s rule for
the slab is ∫ xN

xN−1

f(x)dx ∼ h

12
(−fN−2 + 8fN−1 + 5fN ). (8)

To derive Eq. 8 we first fit it to a parabola to the last three points, as in Eq. 7, where
x0 = xN−2, x1 = xN−1, x2 = xN ,

fcS(x) = A(x− xN−2)2 +B(x− xN−2) + C,

with
A =

fN−2 − 2fN−1 + fN

2δ2
,

B = −fN − 4fN−1 + 3fN−2

2δ
,

and
C = fN−2.
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Integrating over the last slab, with δ → h = xi+1 − xi, gives the desired result,∫ b

b−h
f(x)dx =

∫ xN

xN−1

[
A(x− xN−2)2 +B(x− xN−2) + C

]
dx,

=
A

3
(x− xN−2)3

∣∣∣∣∣
xN

xN−1

+
B

2
(x− xN−2)2

∣∣∣∣∣
xN

xN−1

+ Cx

∣∣∣∣∣
xN

xN−1

,

=
fN−2 − 2fN−1 + fN

6δ2
(x− xN−2)3

∣∣∣∣∣
xN

xN−1

− fN − 4fN−1 + 3fN−2

4δ
(x− xN−2)2

∣∣∣∣∣
xN

xN−1

+fN−2x

∣∣∣∣∣
xN

xN−1

,

=
fN−2 − 2fN−1 + fN

6h2

[
(xN − xN−2)3 − (xN−1 − xN−2)3

]

−fN − 4fN−1 + 3fN−2

4h

[
(xN − xN−2)2 − (xN−1 − xN−2)2

]
+fN−2(xN − xN−1),

=
fN−2 − 2fN−1 + fN

6h2
[7h3]− fN − 4fN−1 + 3fN−2

4h
[3h2] + fN−2[h],

=
7fN−2 − 14fN−1 + 7fN

6
h− 3fN − 12fN−1 + 9fN−2

4
h+ fN−2h,

=
14fN−2 − 28fN−1 + 14fN

12
h− 9fN − 36fN−1 + 27fN−2

12
h+ fN−2h,

=
h

12

[
(14− 27 + 12)fN−2 + (−28 + 36)fN−1 + (14− 9)fN

]
,

=
h

12

[
− fN−2 + 8fN−1 + 5fN

]
.

(b) Integration of f(x) = sin(πx) over [0, 1] using N = 3, 7, 15, 31 slabs/intervals, with
a plot with the absolute error vs. δ = (b− a)/N (Fig 3).
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Figure 3: (left) Log-log plot of the absolute errors vs. δ = (b− a)/N showing a O(δ4) convergence
in the calculation of the (Simpson compound) integration of f(x) = sin(πx) over [0, 1] using N =
3, 7, 15, 31 slabs/intervals. (right) Same for absolute error vs. N .
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Q.4 (Gaussian Quadrature) In the Gauss-Legendre quadrature method, with n
quadrature points, an exact integral of a polynomial up to degree d = 2n−1 is obtained.

(1.) Consider a 5-point quadrature, with tabled roots and weights, for the Gauss-
Legendre method. Compute

I =
∫ 1

0
p(x)dx,

where p(x) is a 9th degree polynomial

p(x) =
9∑

k=0

xk.

(2.) Compute also the compound version of the Simpson’s rule (2 pairs of intervals)
and the (3.)error against the exact integral.

In the Gaussian quadrature method, instead of a fixed spacing, we express the integral as a
sums of weighted pieces, i.e., we choose the location of each xi. The fundamental theorem states
that for some polynomial q(x) of degree N , such that∫ b

a
q(x)ρ(x)xkdx = 0,

such that k = 0, .., N − 1 and ρ(x) is a weight function. We pick the points x1, x2, ...xN as the
roots of the polynomial q(x). For a sets of weights ω1, ..., ωN , the integral∫ b

a
f(x)ρ(x)dx ∼ ω1f(x1) + ...+ ωNf(xN ),

is exact if f(x) is a polynomial of degree < 2N . This is more acurate than just fitting the function
to a polynomial of degree N − 1, as when we had fixed grid of N points.
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