Marina. Hi.
Your Introduction to Group Theory for physicists is really good. Did you do any other Group Theory notes ?
Best wishes.
John,, 07/2014

Dear Marina
Recently, i have a primesense 3d camera and i m beginner in openNi, Nite and c++. i have a project for calculating the volume of a box with this camera. i wondered if you can share ur knowledge as i saw ur interesting paper.
Assoc. Prof. Dr. Abdulkadir SENGUR
Firat University, Technology Faculty,
Electrical-Electronic Engineering Department,23119
Elazig / TURKEY

Dear Prof. Steinkirch,
This is Bardia Najjari, an undergrad physics student with the university of Tehran Iran, I was searching the net looking for some definitions for my Group Theory course when I came across your book. and I wanted to thank you for kindly uploading your book and making it accessible for free. Actually it was pretty useful for me. I just wanted to say thanks.
Bardia Najary,, 12/2013

Hello Marina!
I have found QFT and Group Theory notes on your site. They are very useful. I cordially thank you for writing these up! Now a days I am struggling with Srednicki's QFT and have found this book terse. I am self-studying it and it is my first QFT book. In this case, your notes are such a relief! Alhamdulillah! If you have any other notes on QFT compatible with Srednicki's $\phi^3$ theory, please let me know.
Ome,, 06/2013

Dear Dr Marina von Steinkirch,
I have been reading your interesting notes on :" Introduction group theory for physicists", Could please give much more information, or a reference, on the spinor classification table of page 65. I have a problem to link this classifcation with the one concerning euclidian Majorana spinors given in the work by C. Wetterich entiteled: Spinors in euclidian field theory, ArXiv 1002.3556.
Thank you in advance.
With my best regards
Saidi,, 12/2012

Dear Marina,
I am a mathematician (group theorist) working in Kac-Moody theory.
I realized that physicists constructed finite-dimensional representations of the "maximal compact" subgroups/subalgebras of the E(10) Kac-Moody group/algebra.
It turns out that this representation is a generalization of the 1/2 spin representation of Spin(10)/so(10) and that, in fact, these representations can be generalized to arbitrary diagrams. (See attached manuscript.)
Physicists also constructed higher finite-dimensional spin representations of these objects, see
Unfortunately, I totally fail understanding the symbols physicists use in that context. In fact, I do not even know how to write down the 3/2 spin representation for Spin(5)=Sp(4). I just know that I am looking for 32 by 32 matrices.
While google-ing, I came across your very nice lecture notes on group theory. Do you maybe know where to find/how to construct concrete 32 by 32 matrices for this 3/2 spin representation?
Best wishes,
Ralf Koehl,, 12/2013

Dear Marina,
Hello, my name is Angel. I just started learning matlab and I'm interested in the face morphing. I saw your code to learn something and would like some information: in function morph, when you add the corner points
% Add points on the corners of the images [h, w] = size (image1); image1_points = [image1_points, 1.1, 1, h, w, 1, w, h]; [h, w, number_ch] = size (image2); image2_points = [image2_points, 1.1, 1, h, w, 1, w, h]; What is "number_ch"?
I really hope you can help me. In any case, I thank you also for your support.
See you soon.
Angelo Nardella,, 10/2013