
Introduction to Quantum Information

Marina von Steinkirch

State University of New York at Stony Brook

steinkirch@gmail.com

January 30, 2011



2



Preface

Information is something that can be encoded

in the state of a physical system, and a computation

is a task that can be performed with a physically

realizable device. Therefore, since the physical world

is fundamentally quantum mechanical, the foundations

of information theory and computer science should

be sought in quantum physics. (John Preskill)

With a background in high-energy Physics and in Computer Science, my in-
terest in Quantum Information was evident after the Simons Conference on New
Trends in Quantum Computation in 2010. Among some very introductory talks
(and others not introductory at all), three were particularly very exciting: Quan-
tum Money from Knots from Edward Farhi, Quantum channel capacities from
Peter Shor, and Philosophical and Practical aspects of Building a Quantum Com-
puter, from Michael Freedman.

There are many pedagogical resources covering different approaches in prob-
lems in quantum information and quantum computation. I’ve been studying those
that I believe are appropriate to my interest, however I suggest the reader to go
beyond what I present here. Moreover, these are notes made by a graduate student
for graduate and undergraduate students, please take this in consideration when
you read them. In the first part of these notes I put together the material from
my studies, from [NC00], [PRES01], [KSV02], [MER05] and [STE06], and other
related references. Then I keep track of up-to-date results on topological quantum
computing, quantum information theory, and other related subjects.

Are Quantum Computers more Powerful than Classical Computers?
In these notes, we will learn that quantum computers differ from classical

computation in several respects when it comes to the processing of the information.
For example, we cannot read a quantum data without having the state becoming
the measured value; from the No Cloning Theorem, an arbitrary state cannot be
cloned; and the state may be in a superposition of basis values. However, the ability
of manipulating quantum systems enables the perform of tasks that would not be
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allowed in classical system (for example, factoring large numbers, or achieving
dimensional sizes of physical devices that are comparable to quantum dimensions,
such as the atoms), as well as the achievement of a new level of security of the
information.

KSV’s book, [KSV02], address to this question in a very solid way. First of
all, in a quantum computer, it’s possible to model an arbitrary quantum system
in polynomially many steps (classical computer efficiency = polynomial time).
Second, for problems such as factoring integers into prime number, Peter Shor in
1994, [SHO94], found a quantum algorithm which factorizes an n-digit integer in
n3 steps using abelian groups. The implementation of such solution would break
the commonly used cryptography systems, such as RSA and ElGamal (whose
relie completely on the factoring problem). Finally, for searches in an unsorted
database, quantum computers locate one entry in

√
N steps instead of N for

classical computers.

These were arguments of a decade ago. Nowadays, one of the biggest challenges
of quantum computing researchers is to understand/control the decoherence. This
is the tendency of quantum systems to be disturbed, which leads to to errors
caused by noises, and can be overcome by quantum error correction. In a quantum
computer, errors are continuous, not just bit flips. Since measurement destroys
the superposition, how do we know errors have occurred? Mike Freedman, Michael
Larsen, Z. Wang and Kitaev showed in 2002,[FKLW02], that a topological quantum
computer can simulate any computation of a standard quantum computer. Even
considering that the simulation is approximate, given any accuracy, a braid can
be found, and it will simulate the computation to that accuracy.

In the experimental point of view, there are already many approaches of re-
alizing a quantum computer. The optical approach in trapping of ions, the use
of nuclear magnetic resonance, the concept of quantum dots, the technology of
superconductors devices (SQUIDS), among others, have been improved every day,
with many new publications. A different (mathematical) approach, which is is
also of my particular interest, is the use of anyons (basically, in two-dimensions,
identical particles can pick up an arbitrary phase, and these excitations have been
observed in the fractional quantum Hall effect) and their topological properties,
[KIT97], [FRE98]. This gives rises to the topological quantum information (braid-
ing particles with non-abelian statistics entangled) and I shall talk more about it
in the end of this work.

"A two-dimensional quantum system with anyonic excitations

can be considered as a quantum computer. Unitary transformations

can be performed by moving the excitations around each other.

Measurements can be performed by joining excitations in pairs and
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observing the result of fusion. Such computation is fault-tolerant

by its physical nature." (A. Kitaev, 2008)

As a theoretical Physics student, on the one hand I’m interested on an entire
class of problems related to quantum information theory, including aspects of clas-
sical and quantum cryptography, as well as the computational complexity theory
and quantum algorithms. On the another hand, when it comes to the realization
of quantum computers in the applications of topological theory for anyons, the
discussion becomes also deep and interesting. As one example of this approach,
Kitaev in 2008, [KIT97] stated the following problems:

1) It’s is desirable to find other models with anyons which allow

universal quantum computation. (S5 is quite unrealistic for

physical implementation). Such models must be based on a more

general algebraic structure rather than the quantum double of a

group algebra. A general theory of anyons and topological

quantum order is lacking.

2) It is also desirable to formulate and prove some theorem about

existence and the number of local degrees of freedom. (It seems

that the local degrees of freedom are a sign that anyons arise from

a system with no symmetry in the Hamiltonian).

3) Finally, general understanding of dynamically created, or

materialized symmetry is lacking. There one may find some insights

for high energy physics. If we adopt a conjecture that the

fundamental Hamiltonian or Lagrangian is not symmetric, we can

probably infer some consequences about the particle spectrum.

In addition, the experimental achievements in this field are necessary to be
mentioned, and I try to associate the discussions to the most interesting practical
results. To reach all the proposed objectives, I will be keeping tracking of many
of recent publications (and eventually briefly describe the papers) and real up-to-
date problems as well.These notes are mostly for my own amusement, however I
encourage the reader to send me any suggestion or comment.
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Chapter 1

Quantum Mechanics

Quantum Mechanics tells us WHAT

happens but does not tell us WHY

it happens and does not tell us either

HOW it happens nor HOW MUCH

it costs. (Josef Gruska)

Everything starts with quantum mechanics. The following chapter rep-
resents the contend of a graduate course on the subject. Part of them are
not necessarily relevant for treating quantum information problems. How-
ever, for completeness, I include them here. These chapter were based on the
straightforward references [SAK93], [LL1981], and [GY68].

1.1 States

• The states of a quantum system at time t are given by a vector (ray)
|α〉 in a complex Hilbert space H.

• The observables are given by hermitian operators, A, with complete
set of eigenvectors (states). They are hermitian, i.e. A = A†. All
eigenvalues ai of A are real, and all states, |α〉, are orthogonal.

• The probability of observing a is∑
j

|〈aj|α〉|2 = 〈α|A|α〉

.
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14 CHAPTER 1. QUANTUM MECHANICS

• Compatible observables commute, i.e. [A,B] = AB−BA = 0, and can
be simultaneous diagonalized.

• For an observable A, with a state |a〉, the dispersion is

〈∆A2〉 = 〈A2〉 − 〈A〉2

.

• For two states α and β of the same system,

tr (|β〉〈α|) = 〈α|β〉.

Proof. Let |i〉 be the complete basis vector of the Hilbert space such as∑
i |i〉〈i| = 1. From the definition of trace,

tr (|β〉〈α|) =
∑
i

〈i|β〉〈α|i〉 = 〈α|
(∑

i

|i〉〈i
)
|β〉 = 〈α|β〉.

• A skew-hermitian (anti-hermitian) operator is an operator satisfying
A† = −A. A can have at most one real eigenvalue, which can be
degenerate.

Proof. Let |a〉 the eigenstate of the operator A, then 〈a|A|a〉 = a. Since
A = −A†, 〈a|A|a〉 = −〈a|A†|a〉 = −a∗ = a. The only possible value is
a = 0.

• The equationAB−BA = 1 cannot be satisfied by any finite-dimensional
matrices A,B.

Proof. We take the trace, tr (AB)− tr (BA) = 0 6= tr(1).

• A hermitian (finite) matrix A can always be diagonalized by a unitary
transformation. . A unitary operator, U , satisfies U∗U = UU∗ = 1. In
the eigenvalue equation U |λ〉 = λ|λ〉, if U is unitary, λ = eiθ, with θ
real.
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Proof. Taking the complex conjugate of the eigenvalue equation,

(U |λ〉)† = 〈λ|U † = 〈λ|λ∗

. Sandwiching it with |λ〉, 〈λ|U †U |λ〉 = 1 = |λ|2.

• If both |µ〉, |λ〉 are eigenstates of U , supposing λ 6= µ, then 〈µ|λ〉 = 0.

Proof. Writing U |λ〉 = λ|λ〉 and U |µ〉 = µ|µ〉, taking the complex
conjugate of the second and subtracting them, 0 = 〈µ|U †U − 1|λ〉 =
(µ∗λ− 1)〈µ|λ〉.
Since U is unitary µ∗µ = 1. Inserting one, 0 = µ∗(λ − µ)〈µ|λ〉. The
initial assumption was 〈µ|λ〉 6= 0, following that µ = λ.

• Any 2× 2 matrix X can be expanded into the Pauli matrices ,

X = aµσ
µ,

where µ = 0, 1, 2, 31 and aµ are complex numbers. For any X,

aµ =
1

2
tr(Xσµ).

• If X is a hermitian matrix, all aµ are real.

Proof. If X is hermitian, X†X, therefore
∑

i a
∗
iσ
†
i =

∑
i aiσi. The Pauli

matrices are all hermitian, therefore
∑

i(ai − a∗i ) = 0. Since the Pauli
matrices are a set of linearly independent matrices, in ai = a∗i .

• The time evolution of a state |α〉 is e−
i
~Eαt, where Eα is the eigenvalue.

Therefore the time evolution of a state can be written as |ψ(t)〉 =

e−iĤt/~|ψ(t = 0)〉, found from the Schroedinger equation

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉,

with some initial condition |ψ(t = 0)〉.

• In an alternative picture, the Heisenberg equation of motion is given by

i~
∂Ô

∂t
= [O, Ĥ](t),

where O(t) = eiHt/~Oe−iHt/~.

1Einstein summation convention: AµB
µ =

∑
µ A ·B.
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An Example of Linear Algebra in Quantum Mechanics

Let us consider two matrices

A =

 1 0 1
0 0 0
1 0 1

 , B =

 2 1 1
1 0 −1
1 −1 2

 .

They commute, [A,B] = 0, therefore they have the same eigenvectors(states).
To find these states and the eigenvalues (spectrum), we use the characteristic
equations det(A − λA) = 0 and det(B − λB) = 0, which results that A is
degenerate, therefore we calculate the eigenstate from the non-degenerate B.
Let us say that the final eigenstates are u1, u2, u3.

It is possible to find a unitary transformation which simultaneously diag-
onalizes A and B such that U †AU and U †BU are diagonal. . This matrix is
given by U = (u1, u2, u3).

Proof.

U †BU =

 u†1
u†2
u†3

 (λB1u1, λB2u2, λB3u3) =

 λB1 0 0
0 λB2 0
0 0 λB3



1.2 Schroedinger Equation and Single-Particle

Potentials

1.2.1 Schroedinger Equation

The Schroedinger equation is an equation that describes how the quantum
state of a physical system changes in time. Given a Hamiltonian operator of
the system, H, the equation is

HΨ = EΨ (1.2.1)

HΨ = i~
∂

∂t
Ψ (1.2.2)

where is the eigenvalues (energy) and Ψ the eigenstates (wavefunction that
solves the equation). In the braket formalism,

H|α〉 = a|α〉. (1.2.3)
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Fir a single particle in a potential, V (~x), in 3+1-dimensions, the Hamil-
tonian is in the form

H =
p2

2m
+ V (~x) = − ~2

2m
∇2 + V (~x), (1.2.4)

where p = −i~∇.

1.2.2 Infinite Potential Well

The unidimensional infinite potential well is

V (x) =

{
0, 0 < x < L
∞, otherwise

Solving the Schroedinger equation [SAK93], the eigenvalues (energies)
and eigenstates (wavefunctions) are

En =
π~2n2

2ma2
,

Ψn =

√
2

a
sin(

nπx

a
).

The force exerted by this particle on the potential wall can be estimated,

F = − ∂〈E〉
∂(2a)

.

1.2.3 Finite Potential Well

The unidimensional infinite potential well with boundaries at a,−a is

V (x) =

{
0, inside,−a < x < a;
E − V, outside, x > a, x < −a;

Solving the Schroedinger equation [SAK93], it results in transcendental
equations

Ψ(x) =


A sin kx+B cos kx, −a < x < a;
Cexk

′
, a < x;

Ce−xk
′

x < −a;
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1.2.4 Delta Potential

The attractive delta potential can be written as

V (x) = − ~2λ

2ma
δ(x).

Resulting in the following equation to be solved is:

d2u(x)

dx2
− k2u(x) = −λ

a
δ(x)u(x),

with k2 =
2m|E|
~2

.

The solution, everywhere except at x = 0, must satisfy the equation:

d2u

dx2
− k2u2 = 0,

and at x→ ±∞ we have:

u(x) = e−kx, x > 0,

u(x) = ekx, x < 0.

Imposing boundary conditions,

−k − k = −λ
a
.

1.2.5 Double Delta Potential Well

In the case of the double delta potential, the equation to be solved is

2m

~2
V (x) = −λ

a
(δ(x− a) + δ(x+ a))

The solutions are even (always a single bound state), and odd (at most
one bound state).
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1.2.6 Harmonic Oscillator Potential

The unidimensional harmonic oscillator potential is

V (x) =
1

2
mω2x2,

where ω is the angular frequency of the oscillator. The eigenvalues (energies)
are

En = (n+
1

2
)~ω.

We can represent the states in term of the lowering and raising opera-
tors (or creation and annihilation operators), respectively, â, â†. In terms of
position x̂ and momentum p̂,

â =

√
µω

2~

(
x̂+

ip̂

µω

)
,

â† =

√
µω

2~

(
x̂− ip̂

µω

)
,

where [x̂, p̂] = i~ and [â, â†] = 1. Inverting these equations,

x̂ =

√
~

2µω

(
â+ â†

)
,

p̂ = −i
√

~µω
2

(
â− â†

)
.

For many states,

〈n|x̂|n′〉 =

√
~

2mω

(√
n′δn,n′−1 +

√
nδn′,n+1

)
.

Example: A linear harmonic oscillator in its ground state is ex-
posed to a spatially constant force. At time t = 0, the force is
suddenly removed. Compute the transition probabilities to the
excited states.

When t < 0, the Hamiltonian is

H =
p2

2m
+
mω2x2

2
− Fx.



20 CHAPTER 1. QUANTUM MECHANICS

We rewrite the Hamiltonian as

H =
p2

2m
+
mω2

2

(
x− F

mω2

)2

− F 2

2mω2
,

and introduce the change of variables ξ = x/λ, where λ =
√

~/mω. The
stationary Schroedinger equation becomes

−1

2
ψ′′f (ξ) +

1

2
(ξ − f)2ψf (ξ) = εf ,

where f = λF/~ω, and Ef/~ω−f 2/2. The solutions are given by the Hermite
polynomials , Hn,

ψfn(ξ) =
1

π1/4

1√
2nn!

e−
(ξ+f)2

2 Hn(ξ + f).

In the ground state, n = 0, H0 = 1 resulting ψf0(ξ) = 1
π1/4 e

− (ξ+f)2

2 . Setting
f = 0, the wavefunctions are

ψn(ξ) =
1

π1/4

1√
2nn!

e−
ε2

2 Hn(ξ). (1.2.5)

The transition amplitude is giving by this two wavefunctions

〈ψf0|ψ〉 =

∫
dξψf0(ξ)ψn(ξ).

Example: The Oscillator+Infinite Well Potential.

Let us find the eigenstates and eigenenergies of a particle in the potential

V (x) =

{
mω2x2

2
, x > 0

+∞, x < 0

The ground state of the harmonic oscillator is given by equation (1.2.5),

ψ0(ξ) =
1

π1/4
e−

ξ2

2 .

We now put a barrier in the middle, representing the infinite potential well.
The eigenstates will have to vanish at ξ = 0, resulting in wavefunctions with
only odd Hermite polynomials, therefore, the eigenstates are

ψn(ξ) =
1

π1/4

√
2

22n+1(2n+ 1)!
e−

ξ2

2 H2n+1(ξ),
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where the extra factor of
√

2 is the normalization on ξ ∈ [0,∞). The eigen-
states are

En = ~ω(2n+
3

2
).

1.2.7 Charged Particle in Magnetic Field

The Hamiltonian of a charged particle in a uniform magnetic field B is given
by

H =
1

2m

(
~p− e

c
~A
)

=
m~v2

2
,

where ∂xAy − ∂yAz = B. A classical particle moves according to vi =
±ωB(xi − xi0), where ωB = eB/mc is the cyclotron frequency.

Example: Hamiltonian of a Particle on a Ring in the Presence of
a Magnetic Flux.

A Hamiltonian of a particle on a ring of radius R in a magnetic flux has a
form of

H =
L2

2mR2
,

where L is an operator of an angular momentum L = −i~∂φ − e
c

Aφ
R

, Aφ the
component of the vector potential along the ring. We can choose the gauge
in which Aφ = const.

The flux is given by

Φ =

∫
d~S · ~B =

∮
d~l · ~A = 2πRAφ.

The Hamiltonian can be write as

H = − ~2

2MR2

(
∂φ − i

Φ

Φ0

)2

,

where Φ0 = 2φ~c/e. The eigenvalues will be

E =
~2

2MR

(
M − Φ

Φ0

)2

,

Using the boundary condition ψ(φ) = ψ(φ+ 2π), M must be an integer,
M = 0,±1,±2.... The eigenstates are then

ψM(φ) =
1√
2π
eiMφ.



22 CHAPTER 1. QUANTUM MECHANICS

Example: Spectra of a Particle in ~B and in a Harmonic
Potential.

Let us analyze the problem of finding the ground state wavefunction and
energy of a particle in a constant magnetic field B and in a strong external
harmonic potential. The Hamiltonian is given by

H =
1

2m

(
− i~∇− e

c
~A
)2

+
mω2

0

2
(x2 + y2).

Without magnetic field, the angular momentum of the ground state is zero
and this will be not changed in a a magnetic field as the harmonic potential
becomes strong. To find the solutions of this Hamiltonian, we first choose the
radial gauge Ax = −By/2 and Ay = Bx/2 and rewrite it in polar coordinates,

H = − ~2

2m

(1

r
∂rr∂r +

1

r2
∂2
φ

)
+ i

~2

2m

eB

~c
∂φ +

m

2

(
ω2

0 +
ω2
B

4

)
r2,

where ωB = eB/mc. We separate variables and we get solutions in the form
eiLφψL(r). In the ground state of the oscillator, L = 0 and

HL=0 = − ~2

2m

1

r
∂rr∂r +

m

2

(
ω2

0 +
ω2
B

4

)
r2.

This is the Hamiltonian of the 2D oscillator with the frequency ω =
√
ω2

0 + ω2
B/4.

The ground state energy is E0 = ~ω and the wavefunction of the ground state

ψ = 1√
2πλ2

e−
r2

2λ2 , where 1
λ2

= mω
~ .

1.2.8 Integer Quantum Hall Effect

Let us work in a simple toy model that gives some intuition about the Integer
Quantum Hall Effect (IQHE)2. Let us consider a electron gas confined to the
2D xy-plane and neglect the interaction between electrons. The Hamiltonian
of a particle is

H =
1

2m

(
− i~∇− e

c
~A
)2

+ V (x, y),

where V (x, y) is an electrostatic confining potential and we can take it to be
the one-dimensional harmonic oscillator V = 1

2
mω2

0y
2.

2Exercise proposed by Prof. Abanov, [ABA09]
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For the constant magnetic field B we can use the Landau gauge Ax =
−By,Ay = 0, and separate the variables ψ(x, y) = ψk(y)e−ikx to write down
the stationary Schroedinger equation for ψk(y). We introduce the cyclotron

frequency ωB = eB
mc

and the magnetic length l =
√

~c
eB

and the Hamiltonian

becomes

Hk =
~2

2m
(−i∂y)2 +

mω2
B

2
(y − kl2)2 +

mω2
0

2
y2,

where the Schroedinger equation is Hkψk(y) = Eψk.
We can identify this Hamiltonian with the harmonic oscillator for each k,

with oscillator frequency
√
ω2
B + ω2

0, rewriting as

Hk =
~2

2m
(−∂y)2 +

m(ω2
B + ω2

0)

2
(y − yk)2 +

m

2

ω2
Bω

2
0

ω2
B + ω2

0

k2l4,

where yk =
ω2
B

ω2
B+ω2

0
kl2. The energy levels are

Ek,n = ~
√
ω2
B + ω2

0

(
n+

1

2

)
+
m

2

ω2
Bω

2
0

ω2
B + ω2

0

k2
0l

4.

The levels at some n belong to the same Landau level. We can continue
our analysis assuming that the chemical potential µ is such that the Landau
levels with n > 0 are empty, i.e. En,k > µ for n > 0. The only occupied states
are the ones with n = 0. The filled condition are then given by En,k = µ and
gives −k0 < k < k0(the maximal and minimal values of k of the occupied
levels), with

µ =
1

2
~
√
ω2
B + ω2

0 +
m

2

ω2
Bω

2
0

ω2
B + ω2

0

k2
0l

4.

The oscillator states are at y = yk and the filled states have their centers

(The positions of the occupied levels) in −y0 < y < y0, with y0 =
ω2
B

ω2
B+ω2

0
k0l

4,

at a defined µ.
Finally, the states with maximal and minimal k are the edge states of

IQHE. These edge states have momentum ~k0 and energy Ek0,n=0. The
velocity of corresponding boundary excitations are obtained by differentiating
the energy over the momentum,

v0 =
1

~
∂Ek,n=0

∂k

∣∣∣
k=k0

= c
E0

B
,

where E0 is the confining electric field at the boundary and the result repre-
sents the drift velocity in crossed magnetic and electric fields.
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1.2.9 The Tight Binding Model on 1D Lattice

The Hamiltonian for the tight binding model on unidimensional lattice can
be written as

H = −t
N∑
n=1

(
|n+ 1〉〈n|+ |n〉〈n+ 1|

)
.

It is convenient to make use of the states

|p〉 =
1√
N

N∑
n=1

eipn|n〉,

|n〉 =
∑
k

e−pkn|pk〉,

which are Fourier transform of each other. For a complete set of states∑
k |pk〉〈pk| = 1,

|n〉 =
∑
k

|pk〉〈pk|n〉 =
∑
k

e−ipkn|pk〉.

The spectrum will be defined by

Ek = −2t cos
(2πk

N

)
, (1.2.6)

with k = 0, 1, ..N − 1.

Translation Operator

For a N -dimensional Hilbert space with orthonormal basis |n〉, n = 1, 2, ..., N
the translation operator is

T =
N∑
n=1

|n+ 1〉〈n|,

which is a unitary operator.

Proof. TT † =
∑

n,m |n+ 1〉〈n|m〉〈m+ 1| =
∑

n |n+ 1〉〈n+ 1| = 1, where we
used 〈n|m〉 = δnm.
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Other propriety of T is that it commutes with the previous Hamiltonian,
[H,T ] = 0 (which can be proved writing H = −(T+T †)), and that TN = −1.

Proof. TN =
(∑

n |n〉〈n + 1|
)N

= |n1〉〈n1 + 1|n2〉〈n2 + 1|...|nN〉〈nN + 1|.
Since ni = ni−1 + 1, all factors in the middle become one, and we have
TN =

∑
n |n〉〈n+N | =

∑
n |n〉〈n| = 1, where we use have used the periodicity

|n+N〉 = |n〉.

Tight Binding Model on a Finite Bethe Lattice

Let us consider a tight binding model on a finite Bethe lattice, with coordi-
nation number three and with only two generations of sites. This is given by
the one-particle Hamiltonian

H = t
∑
m,n

|m〉〈n|.

where t is the constant called hopping amplitude and the sum is over all pairs
〉m,n〈 of sites connected to each other by an edge. If for example we put
two noninteraction spinless fermion on the Bethe lattice, the energies of the
states are given by the sum of the energies of occupied levels.

1.3 Spin-1
2 Systems and Angular Momentum

1.3.1 Pauli Matrices

The four Pauli matrices are

σ0 = 1 =

(
1 0
0 1

)
, σx = σ1 =

(
0 1
1 0

)
,

σy = σ2

(
0 −i
i 0

)
, σ3 = σz =

(
1 0
0 −1

)
.
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They have the following properties,

[σi, σj] = 2iσkε
ijk, (1.3.1)

det σi = −1, (1.3.2)

tr σi = 0, (1.3.3)

(σi)
2 = 1, (1.3.4)

(σ · a)(σ · a) = (a)2 · 1, (1.3.5)

(σ · a)(σ · b) = (a.b) · 1 + iσ(a× b), (1.3.6)

(σ · n)k = 1, if k is even, (1.3.7)

(σ.n)k = (σ.n), if k is odd, (1.3.8)

σiσj =
1

2
{σi, σj}+

1

2
[σi, σj] = δij + iεijkσk, (1.3.9)

tr (a · σ)(b · σ)(c · σ) = ai · bj · ck tr (σiσjσk) = 2ia(b× c),(1.3.10)

eiθ~σ·~n = cos(θ) + i~σ · ~n sin(θ), (1.3.11)

(~σ1 + ~σ2)2 = σ2 ⊗ 1 + 1⊗ σ2 + 2(σ ⊗ σ). (1.3.12)

The spectrum and eigenvectors of these matrices are find by the eigenvalue
equation det(σi−λi) = 0. We shall find the eigenvalues: λ1 = λ2 = λ3 = ±1.
The eigenvectors (eigenstates) are found by

σi

(
a
b

)
= ±

(
a
b

)
.

Resulting

|σ1〉 =

(
1
1

)
and |σ1〉 =

(
1
−1

)
,

|σ2〉 =

(
1
i

)
and |σ2〉 =

(
1
−i

)
,

|σ3〉 = |+〉 =

(
1
0

)
and |σ3〉 = |−〉 =

(
0
1

)
,

Example: Calculating the Exponential of Matrices using the Pauli
Basis.

Let us calculate

A = eM = exp

(
3 4
2 1

)
.
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We divide A in a traceless part and the rest by subtracting a term pro-
portional to the unit,

M = 2 · 1 +

(
1 4
2 −1

)
= 2 · 1 +M ′.

We then verify that M ′2 ∝ 1 = 1 · 9 and we can write M ′2n = 9n · 1 and
M ′2n+1 = 9n ·M ′. We can plug this result in the expansion of the exponential,

eM = e2eM
′
= e2

∑
n

( 1

(2n)!
M ′2n+

1

(2n+ 1)!
M ′2n+1

)
= e2

(
1 cosh 3+

M ′

3
sinh 3

)
.

1.3.2 Spin-1
2 Systems

A system of a particle with spin-1
2

(fermion, such as an electron) can be
measured by the following spin operators in function of the Pauli matrices,

Sx =
~
2
σx =

~
2

(
|+〉〈−|+|−〉〈+|

)
,

Sy =
~
2
σy =

i~
2

(
− |+〉〈−|+|−〉〈+|

)
,

Sz =
~
2
σz =

~
2

(
|+〉〈+|−|−〉〈−|

)
.

Along the axis parallel to a general unit vector n̂,

Sn = S · n̂.
The spin up and spin down states of the operator Sn , with eigenvalues

±~/2, are

|Sn,+〉 = cos
(θ

2

)
|+〉+ sin

(θ
2

)
eiφ|−〉,

|Sn,−〉 = − sin
(θ

2

)
|+〉+ cos

(θ
2

)
eiφ|−〉.

Inversely,

|+〉 = cos
(θ

2

)
|Sn,+〉 − sin

(θ
2

)
|Sn,−〉,

|−〉 = sin
(θ

2

)
e−iφ|Sn,+〉+ cos

(θ
2

)
e−iφ|Sn,−〉.

The most general spin-1
2

state can be written as

|s〉 = a|+〉+ beiδ|−〉.
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Measurement

To illustrate how to use the previous basis in a measurement, let us suppose
that the measurement of an electron’s spin along z-axis (Sz) gives +~

2
and

we want the probability that a subsequent measurement of the spin in the
direction n̂ = (sin θ cosφ, sin θ cosφ, cos θ) gives again +~

2
. The probability

of measuring again for Sn in the state |+〉 is given by the square of the value
of the overlap

P = |〈Sn,+|+〉|2 = cos2
(θ

2

)
.

We can thinking this problem backward. Supposing the measurement
of the spin along the axis n̂ gives +~

2
, let us find the probability that a

subsequent measurement of spin along the z-axis yields +~
2
,

P = |〈+|Sn,+〉|2 = cos2
(θ

2

)
.

N spin-1
2

Particles

For N spin-1
2

particles, the total Hilbert space is

H = H1
2 ⊗H2

2 ⊗H3
2 ⊗ ...⊗HN

2 ,

where Hi
2 is the two-dimensional Hilbert space of the ith particle. The di-

mension of H is 2N .
We can define the operator Sz = Siz+S2

z +...+SNz which acts on a product
of one particle state. The eigenstates of Sz will be given by a direct product
of eigenstates of each particle spin, |+〉i, |−〉i. The spectrum is given by the
total number of spin up, N+, and spin down, N−, up to a constant, let us
say sz = ~

2
(N+ −N−), where N+ +N− = N or

sN+
z =

~
2

(2N+ −N).

The total number of states is 2N . The degeneracy of the state N+ can be
thought as the number of spins up of the system, i.e. the number of ways we
can choose N+ states,

gN+ =
N !

N+!N−!
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Permutation Operator

A permutation operator is defined for any state |α〉, |β〉 of two spin-1
2

parti-
cles, as the operator

P
(
|α〉 ⊗ |β〉

)
= |β〉 ⊗ |α〉.

In terms of Pauli matrices we can write the permutation operator as

P =
1

2

(
1⊗ 1 + ~σ ⊗ ~σ

)
,

with eigenvalues λ = ±1 on the eigenstates |±〉 ⊗ |±〉.

A spin-1
2

Particle in a Magnetic Field

The Hamiltonian for the magnetic field in the x-direction is

H = −µx ·B,

where µx is the spin magnetic moment

µx =
2e

mc
Sx =

~e
mc

σx.

1.3.3 Angular Momentum

Orbital Angular Momentum

The orbital angular momentum has the same formalism of the particle spin
angular momentum, where we define the non-abelian commutation relations
of the orbital angular momentum operator,

[Li, Lj] = i~εijkLk.

It is useful to define the squared momentum operator

L2 = Lz +
1

2
(Lz + L−L+ + L+L−).
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Example: For a state with defined by Lz, one has
〈
{Lx, Ly}

〉
= 0.

Proof.

{Lx, Ly} =
1

4i
(L2

+ − L2
−),

This operator in the basis |l,m〉 has zeros on the diagonals, and therefore:

〈l,m|{Lx, Ly}|l,m〉 = 0.

Total Angular Momentum

The total angular momentum also obeys the same commutation rule

[Ji, Jj] = i~εijkJk.

It is useful to define the following non-hermitian raising/ lowering oper-
ators

J± = Jx ± iJy.

The commutation relations are

[Jz, J±] = ±~J±,

[J+, J−] = 2~Jz.

Once again, we can define the squared momentum operator, which com-
mutes to the previous operators,

J2 = J−J+ + J2
z + ~Jz. (1.3.13)

The eigenvalues for the total angular momentum are

Jz|j,m〉 = ~m|j,m〉,
J2|j,m〉 = ~2j(j + 1)|j,m〉,
J+|j,m〉 = ~

√
(j −m)(j +m+ 1)|j,m+ 1〉,

J−|j,m〉 = ~
√

(j +m)(j −m+ 1) |j,m− 1〉,
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where −j ≤ m ≤ j, and one constructs 2j + 1 states. The Matrix Elements
of these states are

〈j′,m′|J2|j,m〉 = ~2j(j + 1)δmm′δjj′ ,

〈j′,m′|Jz|j,m〉 = ~mδmm′δjj′ ,
〈j′,m′|J+|j,m〉 = ~

√
(j −m)(j +m+ 1)δmm′+1δjj′ ,

〈j′,m′|J−|j,m〉 = ~
√

(j +m)(j −m+ 1)δmm′−1δjj′ .

Example: A Spin-1 System.

Let us suppose a spin-1 system given by the Hamiltonian

H = AS2
z +B(S2

x − S2
y).

Using the spin operator S± = Sx ± Sy we can write

H = AS2
z +

B

2
(S2

+ − S2
−).

From the previous formalism we can write the eigenstates

S±|1,m〉 = ~
√

(1±m)(1±m+ 1) |1,m− 1〉.

resulting into the following Hamiltonian,

H = ~2

 A 0 B
0 0 0
B 0 A

 .

Spherical Harmonics

The spherical harmonics are eigenfunctions of the squared orbital angular
momentum, (1.3.13) , and the generator of rotation about the azimuthal
axis. Their general form is

Y l
l (θ, φ) = cl sin

l(θ)eilφ,

where

cl =
(−1)l

2ll!

√
2l + 1

4π
(2l)!.
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Example: Expectation Value of (LxLy + LyLx) in the State with
Angular Part of Y 2

3 (θ, φ).

Writing

{Lx, Ly} =
1

4i

(
L2

+ − L2
−

)
,

the expectation value in the basis |l,m〉 is

〈l,m|{Lx, Ly}|l,m〉 = 0.

Addition of Angular Momentum: Clebsch-Gordan Coefficients

Let us suppose a system of two particles, where we can define the states by
four quantum numbers, let us say j1, j2, j,m: each angular momentum, the
sum of the angular momentum and the z-component of the total angular
momentum. They form a complete basis and they can be decomposed into
the complete basis formed by the four quantum numbers j1, j2,m1,m2: each
angular momentum and each z-component.

|j1, j2, j,m〉 =
∑
m1,m2

|j1, j2,m1,m2〉〈j1, j2,m1,m2|j1, j2, j,m〉.

The coefficients of this change of basis (the last term scalar product of
(1.3.14)) are the Clebsch-Gordan coefficients, which the following selection
rules

• Clebsch-Gordan = 0 unless m = m1 +m2.

• Clebsch-Gordan = 0 unless |ji − j2| ≤ j ≤ j1 + j2.

• For each j1 there are 2j1 + 1 values of m1, so N = (2j1 + 1)(2j2 + 1).

• Clebsch-Gordan coefficients form a unitary matrix.

The direct product of two spin spaces can be calculated by the rule

j1 ⊗ j2 = |j1 − j2| ⊕ |j1 − j2 + 1| ⊕ ... ⊕ j1 + j2,

where it is possible to count the sates

(2j + 1)(2j + 1) =

j1+j2∑
j=|j1+j2|

(2j + 1).

For example, for two spin-particles,

J = J1 ⊗ 1 + 1⊗ J2.
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Example: Decomposing Two p-electrons.

The sum of two p-electrons can be write as

|l1, l2, l,m〉 = |1, 1,−1,−1〉 =
1√
2

(|1, 0〉|1,−1〉+ |1,−1〉|1, 0〉),

where one has 50% probability of having m = −1 or m = 0 if measuring any
of lz.

Example: Two spin-1
2

Particles.

For one electron, one has the following the wavefunction,

ψ(x1, σ1) = ψ1(x1)|+〉+ ψs(x1)|−〉,

where the first part is from the orbital part and the second for spin. For two
electrons,

ψ(x1, σ1, x2, σ2) = ψ++|+ +〉+ ψ+−|+−〉+ ψ−+| −+〉+ ψ−−| − −〉.

The Hamiltonian commutes with the spin operator, therefore they share
the same eigenkets. The sum of two spin-1

2
particles is

1

2
⊗ 1

2
= 0⊕ 1.

These two resulting states are a single, 0, and triplet, 1. The triplet can
be write as

|1, 1〉 = |+ +〉 =
1

2
(1,
√

2, 1),

|1,−1〉 = | − −〉 =
1

2
(1,−

√
2, 1),

|1, 0〉 =
1√
2

(| −+〉+ |+−〉) =
1√
2

(1, 0,−1),

and the singlet,

|0, 0〉 =
1√
2

(
| −+〉 − |+−〉

)
=

1√
2

(1, 1, 1).
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The eigenvalues of this system are

L2ψ = ~2l(l + 1)ψ,

S2ψ =
3

4
~2ψ,

J2ψ = ~2j(j + 1)ψ,

Jzψ = ~mψ,

L · Sψ =
1

2
(J2 − L2 − S2)ψ

=
~2

2

(
j(j + 1)− l(l + 1)− 3

2

)
ψ.

Example: Decomposition of Four spin-1
2

Particles.

1

2

⊗4

= (0⊕ 1)⊗2

= (0⊕ 1)⊗ 1

2
⊗ 1

2

= (
1

2
⊕ 1

2
⊕ 3

2
)⊗ 1

2
= (0⊕ 0⊕ 1⊕ 1⊕ 2),

giving two singlets, two triplets and one quintuplet.

Example: Decomposition of Four p-electrons.

Four electrons in p state have l = 1 each for angular momentum,

1⊗4 = (0⊕ 1⊕ 2)⊗ (0⊕ 1⊕ 2).

giving ltot = 0, 1, 2, 3, 4 values allowed.

Example: Decomposition of a System with j1 = 1
2
, j2 = 3

2
, j3 = 1.

1

2
⊗ 3

2
⊗ 1 = 1⊗ 1⊕ 2⊗ 1,

= 0⊕ 2 · 1⊕ 2 · 2⊕ 3,

which are one singlet (1 state), two triplets (6 states), two quintets (10 states)
and one septet (7 states).
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Tensor Operator

For higher order system, we generalize the commutation relations to

[Jz, T
k
q ] = ~qT kq ,

[J±, T
k
q ] = ~

√
(k ∓ q)(k ± q + 1)T kq±1,

resulting into the the matrix elements

〈α′, j′,m′|T kq |α, j,m〉 6= 0 only if m′ = q +m.

The Wigner-Eckart Theorem is given by the relation

〈α′, j′,m′|T kq |α, j,m〉 = 〈j′, k′,m′, q′|j, k, j′,m〉.〈α′j|T k|αj〉,

with applications on the tensor theory such as

1. Tensor of rank 0, scalar: The scalar operator cannot change j,m
values.

〈α′, j′,m′|S|α, j,m〉 = δjj′δmm′
〈α′j′|S|αj〉√

2j + 1
.

2. Tensor of rank 1, vector: The spherical component of the potential
can be written as Vq=±1,0 and the selection rules are:

∆m ≡ m′ −m = ±1, 0 ∆j ≡ j′ − j = ±1, 0. (1.3.14)

1.3.4 Identical Particles

Let us study the permutation symmetry of the Hamiltonian of two particles

H =
p2

1

2m
+

p2
2

2m
+ V (|x1 − x2|) + V ′(x1) + V ′(x2).

If we start with a system which is permutation symmetrical, the states
continue to have this propriety even if it evolutes with time. The eigenstate
of the Hamiltonian and the permutation operator are

|k′, k′′〉 =
1√
2

(|k′〉 ⊗ |k′′〉 ± |k′′〉 ⊗ |k′〉),
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with the eigenvalues
P12|k, k′′〉± = ±|k′, k′′〉±.

It is useful to define the symmetry projectors, one symmetrical and one
anti-symmetrical projector,

S12 =
1

2
(1 + P12),

A12 =
1

2
(1− P12),

which commutes to the Hamiltonian,

P12HP
−1
12 = H,

Applying to the eigenstates,

S12|k′〉 ⊗ |k′′〉 = |k′, k′′〉+,
A12|k′〉 ⊗ |k′′〉 = |k′, k′′〉−.

Many Identical Particles

We generalize the theory for many identical particles,

Vi ⊗ V j...⊗ Vk.

The permutation operator Pij takes |k′i〉 ⊗ |k′′j 〉 to |k′′i 〉 ⊗ |k′j〉, with the
following proprieties:

• P 2
12 = 1.

• [Pij, Pkl] = 0, if (ij)(kl) = 0 (they do not intersect).

• P12P23P21 = P23P12P23 (Braid’s theory).

Fermions and Bosons

The operator permutation applied to symmetrical (bosons) or anti-symmetrical
(fermions) systems gives

Pij|fermions〉 = +|fermions〉,
Pij|fermions〉 = −|fermions〉.
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Bosons |a〉 ⊗ |a〉 Symmetric P spin
12 = +1 P orb

12 = −1
|b〉 ⊗ |b〉

|a〉 ⊗ |b〉+ |b〉 ⊗ |a〉

Fermions |a〉 ⊗ |b〉 − |b〉 ⊗ |a〉 Antisymmetric P spin
12 = −1 P orb

12 = +1

Table 1.1: Spectrum for two identical Particles

Let us suppose a system of two particle, the spectrum is given by table
1.1, where one sees clearly the principle of exclusion of Pauli.

The permutation operator can be split as

P spin
12 =

1

2
(1 +

4

~2
S1S2)

=
1

2
(1− σ1σ2),

with eigenvalues 3
4
~2 for triplet and 1

4
~2 for singlet.

1.4 Density Matrix

A density matrix is a hermitian matrix of trace one, that describes the sta-
tistical state of a quantum system.The density matrix is useful for dealing
with mixed states, i.e. statistical ensemble of two or more different systems.
Before we were describing states as a coherent linear supposition, for example
|α〉 = C+|+〉+ C−|−〉, with only defined direction. With the density matrix
formalism we can work with completely random ensembles (unpolarized), or
pure ensemble (polarized), or mixed ensemble (partially polarized).

The operator that is represented by the density matrix is the density
operator,

ρ =
∑
i

wi|αi〉〈αi|. (1.4.1)

The expected value for any operator can be calculated by

〈A〉 = tr (ρA),
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with

tr (ρ) = 1.

The evolution of the density operator is given by

i~∂Eρ = [H, ρ].

The entropy is given by

S = −tr (ρ ln ρ) = −
∑
i

lnρ, (1.4.2)

and it is additive (S = S1 + S2), which can be proved by applying the trace.

Example: Ensemble of spin-1 Systems

For spin-1 systems the density matrix is 3 × 3, which has 3 · 3 · 2 = 18 real
parameters. Since the matrix is hermitian we reduce this number to 9. Since
the trace is unity, it has 8 parameters. The [Si] provide three more. Other
6 parameters come from [SiSj], which since [S2] = 2~2, gives the 5 final
parameters.

1.4.1 Pure Ensemble

The pure ensemble is completely polarized. On (1.4.1), we have w1 = 1,

ρ2 = ρ,

tr(ρ2) = 1,

S = 0.

Example: Finding the Reduced Density Matrix for the first spin-1
2

in a Pure State of two spin-1
2
.

Let us write the two spin-1
2

given by the normalized state

1√
6

(
|+〉 ⊗ |−〉+ 2|−〉 ⊗ |+〉+ i|+〉 ⊗ |+〉

)
.

Taking the trace with respect to the second spin gives,

ρ =
∑
i

〈i|Ψ〉〈Ψ|i〉 = N

(
2 2i
−2i 4

)
.
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with the states |i〉, i = +,−, in the second spin space. The normalization is
tr ρ = 1, therefore N = 1

2
, resulting in the reduced matrix

ρ =

(
1
3

i
3

− i
3

2
3

)
.

We can decompose the density matrix as

ρ =
1

2
1 +

1

3
σ2 −

1

6
σ3,

which makes it easy to calculate the expectation values of the components
of the operator S for the first spin in this state. The average over the spin
operator is

tr(ρS) = tr(ρSx)x̂+ tr(ρSy)ŷ + tr(ρSz)ẑ =
~
6

(2ŷ − ẑ).

The entropy, i.e. the entanglement, of this reduced matrix is given by
the equation (1.4.2) and can be calculated by finding the eigenvalues of the
density matrix. Diagonalizing ρ by det(ρ− λ1), gives the eigenvalues λ± =
1
2
±
√

5
6

. Therefore,

S = −
∑
k

ρkk lnρkk = −
∑
i

λi lnλi.

1.4.2 Mixed Ensemble

The random ensemble is partially polarized. The reduced matrix for an
entangled pure ensemble is a mixed ensemble,

tr (ρ)2 =
∑

ρi < 1,

1

N
≤ tr ρ2 ≤ 1.

Example: Mixed Ensemble of a spin-1
2 System.

Supposing that the ensemble averages [Sx], [Sy], [Sy] are known. The spin-
1
2

density matrix is a hermitian 2 × 2 matrix with unit trace, therefore we
decompose

ρ =
1

2
+ αiσ

i,
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where αi = 1
2

tr (ρσi) = 1
~ [Si]. Writing the spin operator as

[Si] = tr(ρSi) =
~
2

tr(ρσi),

we find the density matrix of this ensemble,

ρ =
1

2
1 +

1

~
[S]σ.

We have learned that the condition for an ensemble to be pure is tr ρ2 = 1
and applying this condition to [Sj],

tr(ρ2) =
1

2
+

2

~
([Sx]

2 + [Sy]
2 + [Sz]

2) = 1,

we can find the condition on [Sj] to be a pure ensemble,∑
i

[Si]
2 =

~2

4
.

The same condition can be found by imposing that entropy is zero.

1.4.3 Random Ensemble

The random ensemble is completely unpolarized,

tr ρ2 =
1

N
,

1

N
≤ ρ ≤ 1,

S = ln N.

1.4.4 Time Evolution for Ensembles

The time evolution for ensembles is given by the Schroedinger equation,

i~
∂

dt
= −[ρ,H].

If the dynamics of an ensemble is governed by the Schroedinger equation,
an ensemble which is pure at t = 0 cannot evolve into a mixed ensemble.
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Proof. Assuming a pure quantum state |α〉, the density matrix is

ρ = |α〉〈α|,

and the time evolution

ρ̇ =
1

i

(
H|α〉〈α| − |α〉〈αH

)
= i[ρ,H].

For a pure ensemble ρ2 = ρ (idempotent), giving tr (ρ2) = 1, taking the
derivative it on time, due the cyclic propriety of trace,

d

dt
trρ2 = 2i tr(ρ[ρ,H]) = 0,

therefore we conclude the condition tr ρ2 = 1 is also true for all t 6= 0.

1.5 Symmetries

1.5.1 Linear Transformations

In quantum mechanics, the Hamiltonian is translation invariant,

[H,T (a)] = 0.

The momentum operator is the generator of spatial translations, therefore
the (continuous) translation operator is

T (a) = 1− iεG

~
= e−

i
~ap̂z , (1.5.1)

The angular momentum operator is the generator of rotation of the sys-
tem,

R(n̂, φ) = 1− iεG

~
= e−

i
~φn̂·L̂.

1.5.2 Parity

Parity, or spacial inversion is the propriety of changing right-handed systems
on left-handed (such as a mirror). In quantum mechanics we define the parity
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operator,

|α〉 → π|α〉,
π−1π = 1,

π2 = 1,

π|n±〉 = ±|n±〉.

From the commutation relation with the Hamiltonian,

[H, π] = 0,

we simultaneously diagonalize both operators. Therefore, |n〉, eigenstates of
H, are also eigenstate of the parity operator:

π|n±〉 =
1± π

2
|n〉,

H|n±〉 = En|n±〉.

The relations between parity and other relevant operators are in table
1.5.2. For the the wavefunctions, the parity operator acts as:

π|α, l,m〉 = (−1)l|α, l,m〉.

p {p, π} = 0 odd polar
x {x, π} = 0 odd polar

S · r {S · r, π} = 0 odd pseudoscalar
L [L, π] = 0 even axial
J [J, π] = 0 even axial
S [S, π] = 0 even axial

L · S [L · S, π] = 0 even scalar
r · p [r · p, π] = 0 even scalar

Table 1.2: Parity on operators.



1.5. SYMMETRIES 43

Example: The Double-Well Potential.

π|S〉 = |S〉,
π|A〉 = −|A〉,

|R〉 =
1√
2

(|S〉+ |A〉),

|L〉 =
1√
2

(|S〉 − |A〉),

∆ = Ea − Es,

T =
2π~
∆

.

The time evolution is then:

|R〉 → 1√
2
e−

i
~Es
(
|S〉 ± e−

i
~∆t|A〉

)
.

Example: Two Operators that Anti-commute.

For two operators A and B which {A,B} = 0, we have:

A(B|Ψ〉) = −α(B|Φ〉),
B(A|Ψ〉) = −β(A|Φ〉).

Therefore the eigenvalues of A come in pairs α, −α, and same happens for
B. If one makes A→ π and B → p, it is possible to see that a state p|Ψ〉 is
also a eigenstate of π.

Parity Selection Rule (Wigner)

Operators with odd parity have odd non-vanishing matrix elements only
between states of opposite parity. Operators with even parity connect
states with same parity.

〈α′, l′,m′|x|α, l,m〉 → (−1)l
′ × (−1)l, (1.5.2)

(−1)l−l
′+1 = 1, (1.5.3)

l′ − l = odd. (1.5.4)
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Analyzing for z, a spherical tensor of rank q = 1,m = 0, one rewrites the
theorem as:

〈α′, l′,m′|z|α, l,m〉 = cm
′,m

j′,j 〈α
′, j′|z|α, j〉,

The selection rules are m = m′,∆j = 0,±1.

Hence z|α, j〉 has opposite parity, the overlap states give non-zero contri-
butions only for ∆j = ±1.

1.5.3 Lattice Symmetry

The Tight Binding Hamiltonian on the 1d Lattice

H = −W
N∑
n=1

(
eiθ|n〉〈n+ 1|+ e−iθ|n+ 1〉〈n|

)
.

Where |n〉 forms an orthonormal basis of the Hilbert space and the periodic
boundary is given by |n〉 ≡ |n + N〉. To find the spectrum of the system
one uses the translational invariance. The translation operator is given by
(1.5.1):

T |x〉 = |x+ a〉,
e
i
~p.aΨ(x) = Ψ(x+ a),

T =
∑
n

|n+ 1〉〈n|,

TN = 1→ TN |t〉 = tN |t〉 → tK = e
2πik
n .

One then has:

H = −WeiθT −We−iθT †,

and
[T,H] = 0.

The spectrum of the Hamiltonian is exactly the same as (1.2.6):

Ek = −2W cos(
2πk

N
+ θ), k = 0, ..., N − 1.
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1.5.4 Time Reversal

Time reversal is an anti-unitary operator:

〈β̃|α̃〉 = 〈β|α〉∗,
Θ(c1|α〉+ c2|β〉) = c∗1Θ|α〉+ c∗2Θ|α〉,
−iHΘ = ΘiH,

{H,Θ} = 0→ HΘ = −ΘH.

Hermitian operators are odd or even under time reversal:

ΘAΘ−1 = ±A.

It also gives a phase restriction on the matrix element of A taken with respect
to time reversed state:

〈β̃|A|α̃〉∗ = ±〈β|A|α〉.

The action of the time reversal operator on other operators can be seen on
table 1.3. The action of the time reversal on the the wavefunction is:

ΘΨ(x) = Ψ∗(x),

ΘΨ(p) = Ψ∗(−p),
Θ|l,m〉 = ΘY m

l = (−1)mY −ml = (−1)m|l,−m〉,
Θ2|l,m〉 = |l,m〉.

x Θ|x〉 = |x〉 even
p Θ|p〉 = | − p〉 odd
J ΘJΘ−1 = −J odd

Table 1.3: Time Reversal on operators.

If [H,Θ] = 0 and En is not degenerate, then the wavefunction can
be chosen as real. The proof is given by showing that |n〉 and Θ|n〉
are the same state.
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Example: Spin-1
2
.

Θ2|ψ〉 = −1|ψ〉.

Example: Spin Integer.

Θ2|〉 = 1|〉.

Example: Spin J.

It acts as a rotation by 2π.

Θ2|ψ〉 = (−1)2j|ψ〉 = ηKe−
iπJy

~ |ψ〉.

Where K is the complex conjugation operator, η the arbitrary phase and
the exponential (1.3.12) is :

e−
iπJy

~ =

 0 0 1
0 −1 0
1 0 0


An example of J integer is two electrons system or the orbital of a spinless

particle. Both are given by:

1√
2

(
|+−〉 ± | −+〉

)
.

Any system with an odd (even) number of electrons is odd(even)
under Θ2:

Θ2|l,m〉 = (−1)2m|l,−m〉, for m half or integer.

Kramer Degeneracy

Time reversal commutes with the Hamiltonian:

[H,Θ] = 0,

but it does not commutes to the evolution operator, i.e. it does not anticom-
mutes to the Hamiltonian,

ΘU(t, t0) 6= U(t, t0)Θ.
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It leads to a new non-trivial phase restriction.

e
i
~HtΘe−

i
~Ht = e

2i
~ HtΘ,

so Θ2|n〉 = |n〉 is not possible for spin
1

2
.

Therefore, if the spin is n
2
, the system is double degenerate, and |n〉, Θ|n〉

must be different states. For a system composed of odd number of elements,
each energy must be at least two-fold degenerated. Kramer degeneracy in a
system with odd number of electrons can be lifted by an external magnetic
field.

1.6 Perturbation Theory

Perturbation theory is a set of approximation methods to resolve a compli-
cated quantum system in terms of a simpler.

1.6.1 Time-Independent for Non-Degenerated Energies

In the time-indepedent pertubation theory, for non-degenaterd energies, the
Schroedinger equations for the perturbed and unperturbed systems are

H|n〉 = En|n〉,
H = H0 + λV,

H0|n0〉 = E0
n|n0〉.

The new states in function of the unperturbed can be expanded as

|n〉 = |n0〉+ λ|n1〉+ λ2|n2〉...,

with the normalization condition,

〈n0|n〉 = 1.

The perturbation of the energy is given by

∆n = En − E0
n = λ∆n1 + λ2∆n2...
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We then solve the Schroedinger equation,

(H0 + λV )|n〉 = (E0
n + ∆n)|n〉,

(λV −∆n)|n〉 = (E0
n −H0)|n〉 multiplying from the left for 〈n0| :

0 = 〈n0|(λV −∆n)|n〉,

|n〉 =
1

(E0
n −H0)

(λV −∆n)|n〉.

Introducing the projection operator,

φn = 1− |n0〉〈n0| =
∑
t

|k0〉〈k0|,

with the following proprieties,

1

E0
n −H0

φn = φn
1

En0 −H0
= φn

1

En0 −H0
φn,

allows us to write the perturbation on the states as

|n〉 = |n0〉+
1

(E0
n −H0)

φn(λV −∆n)|n〉.

Therefore, the first order correction for the eigenstate is

|n1〉 =
φn

E0
n −H0

V |n0〉 =
∑
m6=n

Vmn
E0
n − E0

m

|n0
m〉.

The energy correction is given by

∆n = 〈n0|V |n〉,∆n1 = 〈n0|V |n0〉,∆nn = 〈n0|V |nn−1〉.

To find the second order of the energy correction, one needs ∆n2,

∆n2 = 〈n0| V φnV
E0
n −H0

|n0〉 =
∑
m6=n

|Vmn|2

E0
n − E0

m

.

Therefore, the second order correction for the eigenstate is

|n2〉 =
φn

E0
n −H0

V |n1〉 − φn
E0
n −H0

∆n1|n1〉.
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In the second order, the correction to the ground state is negative. The
total energy for the Hamiltonian is then given by

En = E0
n + Vnn +

∑
k

|Vnk|2

E0
n − E0

k

.

The eigenfunction normalization is fiven by

Zn =
1

〈n|n〉
,

Zn =
∂En
∂E0

n

.

Example: Quadratic Stark Effect.

The quadratic stark effect is the effect of a one-electron atom in an external
electrical field. The Hamiltonian splits in two parts:

H = H0 + V,

H0 =
p2

2m
+ V0(r) and V = −e|E|z.

The correction on the energy is then:

∆k = −e|E|zkk + e2|E|2
∑
j 6=k

|zkj|2

E0
k − E0

j

+ ...

With no degeneracy, |ko〉, from selection rules, (1.5.4) l′ = l ± 1 and
m′ = m, is a parity state, therefore zkk = 0. Hence, from parity/selection
rules, one can see that there can be no linear Stark effect!

1.6.2 Time-Independent for Degenerated Energies

In the time-independent pertubation theory for degenerated energies, to cal-
culate a perturbed Hamiltonian, we diagonalizes each block of this H1,

H0 =


E0

1 0 0 0
0 E0

1 0 0
0 0 E0

1 0
0 0 0 E0

2


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H1 =


E1

1 X X X
X E1

1 X X
X X E1

1 X
X X X E1

2


The secondary corrections for the energies are

|m0〉, m=1,2,3,...g,

|l〉 =
∑
m

〈m0|l0〉|m0〉,

H|l0〉 = E0|l0〉,
The secular equation is det (V − (E − E0

0)) = 0 where ∆l = E − E0
0 ,

and the correction is ∆l2 =
∑
k 6=d

|Vkl|2

E0
0 − E0

k

.

Example: The Linear Stark Effect.

Knowing that the Bohr radius is a0 = ~2
me2

, one has for the splitting of energies
of the Hydrogen atom:

|n, l,m〉 → En =
−e
2a0

1

n2
.

|1, 0, 0〉 → E =
−e
2a0

, 1s e.

|2, 0, 0〉 → E =
−e
2a0

, 2s e.

|2, 1,±1〉 → E =
−e
2a0

1

4
, 2p e.

|2, 1,±0〉 → E =
−e
2a0

1

4
, 2p e.

For the Hydrogen atom there are degeneracies for all but the ground state.
The perturbation V = −eZ|E| has non vanishing values only between states
of opposite parity:

V =


0 0 〈2s|V |2p,m = 0〉 0

〈2p,m = 0|V |2s〉 0 0 0
0 0 0 0
0 0 0 0


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From selection rules (parity), m is the same and this matrix gives the
only transition that the electron can make. Diagonalizing it,

λ = ±
∣∣∣〈2p,m = 0

∣∣∣V ∣∣∣2s〉∣∣∣.
For example, if n = 2, the splitting is on 2s, 2p(m = 0), 2p(m = −1) and

2p(m = 1). The the level of energies are

• 2s+ 2p, (m = 0),

• 2p, (m = ±1),

• 2s− 2p, (m = 0).

Therefore, the corrections are

〈2p,m = 0|V |2s〉 = 3ea0|E|,
V = 3ea0|E|σx (on a diagonal matrix),

∆1 = −3ea0|E|,
∂∆

∂|E|
= 3ea0.

The linear combination has no parity, however it is a combination that
make the distance from E further. The state has now dipole moment.

1.6.3 Hydrogen Atom

The Hamiltonian of the hydrogen atom is given by

H =
p2

2µ
+ V (r), (1.6.1)

V (r) = −Ze
2

r
, (1.6.2)

which commutes to the angular momentum operator,

[H,L] = 0.



52 CHAPTER 1. QUANTUM MECHANICS

In spherical coordinates the Hamiltonian and the respective eigenfunc-
tions are

H =
~2

2m
(

1

r2
∂rr

2∂r −
l2

r2
+ V (r)),

l2 =
L

~
= −(

1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2
φ),

Ψnlm = RnlY
m
l (θ, φ).

Minimizing the equation,

~2

2mr2
o

− e2

r0

= 0,

ro =
~2

2me2
= a0,

E = −1

2

me4

~2
.

From the introduction of a new dimensionless variables (ρ = 2Zr
na0

), where

a0 = ~2
mee2

is the Bohr radius, it is possible to find the Legendre equation:

ρ→∞,∼ ∂ρ2 −→ R ∼ e−ρ/2,

ρ→ 0,∼ ρ2 −→ α(α + 1) = l(l + 1), so α = l,

Resulting in: Rnl = ρle−ρ/2fnl.

The solutions for n ≥ l + 1 are the Laguerre polynomials of degree n,
L2l+1
n+1 ,:

Ln = eρ∂nρ (e−ρρn),

Lkn = (−1)k∂ρkLn+k,∫ ∞
−∞

e−ρρ2lL2l+1
n+l (ρ)ρ2dρ =

2n(n+ l)!3

(n− l − 1)!
.

The solutions for the radial part are:

Rnl(r) =

[( 2Z

na0

)3 (n− l − 1)!

2n(n+ l)!3

]1/2

e−ρ/2ρlL2l+1
n+l (ρ).
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The solution of the Schroedinger equation is

Ψnlm = Rnl(r)Y
m
l (θ, ψ),

En = − 1

2n2

Z2e2

a0

.

The degeneracy is n2 and can be seen at figure (1.1) (without taking into
account the spin, which doubles it to 2n2).

Figure 1.1: Degeneracy on the Hydrogen atom potential.

On a central potential, there is a lift of energy, which will depend on l:

∆E =
〈
n, l,m

∣∣∣Vo(r)− (−2e2

r
)
∣∣∣n, l,m〉.
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It is useful to have the following expected values calculated:

〈rk〉 =

∫ ∞
0

dr r2+k(Rnl(r))
2,

〈r〉 =
a0

2Z
(3n2 − l(l + 1)),

〈r2〉 =
a0n

2

2Z2
(5n2 + 1− 3l(l + 1))

〈1
r
〉 =

Z

n2a0

(with no splitting),

〈 1

r2
〉 =

Z2

n3a2
0(l + 1

2
)
.

Adding a magnetic field, the energy will also split m. The degeneracies
related to the quantum numbers can be seen at table 1.4.

n l Name g gtotal

1 0 1s 1 1
2 0 2s 1
2 1 2p 3 4
3 0 3s 1
3 1 3p 3
3 2 3d 5 9

Table 1.4: Degeneracies of Hydrogen atom.

In conclusion, for the Hamiltonian of the hydrogen atom, the equation
((1.6.2)) is the gross structure, giving a energy of En ∼ − 1

2N2 . However, it

is possible to include the following corrections (where α = e2

~c ∼
1

137
):

• Relativistic and Spin-orbit corrections (fine structure constant) ∼ α2;

• Radiation corrections (Lamb shift), ∼ (Zα)2α ln 1
2
;

• External field;

• Electro-electron interaction;

• Nuclear-spin correction (hyperfine structure), ∼ (Zα)2 m
M

.
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Relativistic Corrections

Expanding the relativistic energy-momentum relation, one has the correc-
tions for higher orders:

E =
√

(mc2)2 + (pc)2 = mc2 +
p2

2m
+

p2

8m2c2
...

From the Dirac equation (where α, β are Dirac matrices), the Hamiltonian

can be parabolically approximate to p2

2m
:

HDir = e

[
α

(
p− e

c
A

)
+ βmc2 + eφ

]
.

The Foldy-Wouthuysen transformation is:

HDir ≈ mc2 +
1

2m
(p− e

c
A)2 − p4

8m3c2
+ eφ− e~

2mc
σ ·B −

− e~2

8m2c2
∇E − ie~2

8mc2c2
σ · ∇ × E − e~

4m2c2
σ · E × p ...

The only terms that are not negligible are

− e~
4m2c2

σ · E × p = − e~
4m2c2

(
− 1

re

dV

dr

)
σ · r × p

L
,

=
1

2m2e2

1

r

dV

dr
L · S,

which is the correction for the spin-orbit interaction,

HLS =
1

2m2e2

1

r

dV

dr
L · S

Spin-Orbit Interaction and Fine Structure

Because of the central force part, the valence electron has electric field pro-
portional to the central potential Vc(r). The Hamiltonian is then:

H0 =
p2

2m
+ Vc(r)
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The perturbation for the state |n, l,ml, s,ms〉 is HLS, where ml and ms are
not good quantum numbers but l and s are, since L · S commutes to all:
L2, S2, J2, Jz. The degeneracy of L · S is (2l − 1)(2l + 1) and this is the size
of the matrix.

E
(0)
nl → E

(0)
nl + ∆nlj,

∆nlj = 〈n, l, s, j,m| 1

2m2c2

1

r

dVc
dr

L · S|n, l, s, j,m〉,

=

∫ ∞
0

dr r2R2
nl

1

r

dV

dr
〈L · S〉.

But 〈L · S〉 =
~2

2

(
j(j + 1)− l(l + 1)− s(s+ 1)

)
,

So, ∆nlj =
∆nl

2

(
j(j + 1)− l(l + 1)− s(s+ 1)

)
.

For spin s = ±1
2
, there are two values for j. The Lande’s interval rule

gives

∆nlj −∆nl(j−1) = ∆nl
1

2

(
j(j + 1)− (j − 1)j

)
= ∆nlj

The actual value for the splitting is then

∆nlj ∼ 〈 ~2

2m2c2

1

r

dV

dr
〉

∼ e2

a3
o

~2

m2c2

∼ e2

ao

~2

a2
0mc

2

Giving the correction for fine structure,

∆nlj ∼
e2

a0

α2,

order of (∼ 1
1372

), and significant for f electrons.
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Zeeman Effect

The Zeeman effect occurs when one applies an uniform magnetic field to the
hydrogen atom,

B = ∇× A,

H =
p2

2m
+ Vc(r)−

e

2mc
(p · A+ A · p) +

e2A2

2mc2
,

A =
1

2
B × r = −1

2
(Byx̂−Bxŷ).

For ∇A = 0, p · A = A · p,

A · p = B(−1

2
yPx +

1

2
xpy) =

B

2
Lz,

A2 =
1

4
B2(x2 + y2).

The Hamiltonian is then

H ∼=
p2

2m
+ Vc(r) +

1

2m2
ec

2

1

r

∂Vc
∂r

L · S − e

2mc
B(Lz + 2Sz),

H = H0 +HLS +HB.

For the case which HB � HLS: HB is treated as a small perturbation
and one studies the eigenkets of H0 +HLS, J2, Jz, noting that:

Lz + 2Sz = Jz + Sz, and |n, l, s, j,m〉,

〈Lz + 2Sz〉 = 〈Jz + Sz〉 = ~mj + 〈Sz〉,

|j = l ± 1

2
,m〉 = ±

√
l ±m+ 1

2

2l + 1
|ml

= m− 1

2
,ms =

1

2
〉+

√
l ∓m+ 1

2

2l + 1
|ml

= m+
1

2
,ms = −1

2
〉,

|j = l ± 1

2
,m〉 = ±c+|ml

= m− 1

2
,ms =

1

2
〉+ c−|ml

= m+
1

2
,ms = −1

2
〉, .
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Therefore 〈Sz〉 = ~
2
(|c+|2 − |c−|2) = ± m~

2l+1
. The correction in the energy

due B is then proportional to mj:

∆EB = −e~B
2mc

mj(1±
1

2l + 1
).

Now, the Lande’s factor is given by

〈Sz〉 = β〈Jz〉 = βmj~,

g = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
.

For the case which HB � HLS: the term HB is more important than
HLS.

〈HB〉 = −eB~
2mc

(ml + 2ms),

〈L · S〉 = ~2mlms.

Dominates Good Not Good

Weak B HLS J2, L · S Lz, Sz
Strong B HB Lz, Sz J2, L · S

Table 1.5: Applying a magnetic field to the hydrogen atom.

1.6.4 Time-dependent Perturbation Theory

The pertubation theory for time-dependent systems consists in finding the
solutions of

H = H0 + V (t),

|α〉t = e−u
1
~H0t|α〉0,

i~∂t|α〉t = H0|α〉t,
i~∂t|α〉 = (H0 + V (t))|α〉.
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The Interaction Picture

The interaction in Schroedinger and Heisenberg pictures is represented by

|α〉I = e
i
~Ent|α〉S

= e
i
~H0te−

i
~Ht|α〉H .

Where the observables are

AI = eiH0t/~ASe
−iH0t/~,

VI = eiH0t/~V e−iH0t/~.

The connection between the Schroedinger and Heisenberg is H instead of
H0,

i~
∂

∂t
|ψ〉I = i~

∂

∂t
e−H0t/~|ψ〉S = eiH0t/~V e−iH0t/~eiH0t/~|ψ〉S.

Therefore, the equations for the interaction picture are given by

i~
∂

∂t
|ψ〉I = VI |ψ〉I ,

∂AI
∂t

=
1

i~
[AI , H0].

Heisenberg Interaction Schroedinger

State No Change Evolution by VI Evolution by H
Observable Evolution by H Evolution by H0 No Change

Table 1.6: The Interaction picture.

Dyson

The time evolution operator is the interaction picture is

i~∂t|α〉I = VI |α〉I ,
|α, t〉I = UI(t, t0)|α, t0〉I ,
i~∂tUI(t, t0) = VI(t)UI(t, t0),

Solving for the condition: UI(t0, t0) = 1.
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The transition probability can be predict with UI , together with the time
development of any stateket. If the initial state at t = 0 is one of the energy
eigenstates of H0, one obtains the initial stateket at later time,

UI(, t, t0) = 1−
∫ t

t0

VI(t
′)UI(t

′, t0)dt′,

|i〉t = U(t, t0)|i〉t=0 =
∑
n

|n〉〈n|UI(t, t0)|i〉,

〈n|UI(t, t0)|i〉 = e
i
~ (Ent−Eit0)〈n|U(t, t0)|i〉.

The term 〈n|U(t, t0)|i〉 is the transition amplitude (≈ C
(0)
n + C

(1)
n + C

(2)
n ...).

The probability of transition i→ n is

P (i→ n) = |C(1)
n (t) + C(2)

n (t)...|2.

Constant Perturbation

In a system with a given constant pertubation, we can represent the problem
as

V (t) = V θ(t),

H = H0 for t < 0,

H = H0 + V (t) for t > 0,

(H0 + V )|ñ〉 = Ẽn|ñ〉,
|i〉 =

∑
ñ

|ñ〉〈ñ|i〉,

|i〉t =
∑
ñ

e−
i
~ Ẽnt|ñ〉〈ñ|i〉.

This is not exactly the previous results from the perturbation series, here
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we should calculate the following coeficients,

C(0)
n = δin,

C(1)
n = − i

~

∫ t

0

dτeiωniτVni(τ)dτ,

=
Vni

En − Ei
(1− eiωniτ ).

|C(1)
n |2 =

4|Vni|2

En − Ei
(2− 2 cosωnit),

=
4|Vni|2

En − Ei
sin2(

En − Ei
2~

t),

In particular, when En ∼ E1,

|C(1)
n |2 =

|Vni|2

~2

sin ωnit
2

(ωni
2

)2
,

=
|Vni|2

~2
t2 for t� ~

|Vni|
.

Defining ω = En−Ei
~ , when t becomes large, |C(0)

n |2 is appreciable only for
those final states that satisfies,

t ∼ 2π

|ω|
=

2π~
|En − Ei|

.

For states with exact energy conservation (En = Ei), the transition am-
plitude is quadratic in t,

|Cn(t)|2 =
1

~2
|Vni|2t2.

A transition with appreciable probability is possible in the range of the
Uncertainty Principle,

∆t ·∆E ∼ ~.

When the interaction time is finite, the energy conservation is not perfect
and the spread of ∆E of values of Ef−Ei is T∆E > c~. The total probability
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of particle goes to state:∑
n

|C(1)
n |2 =

∫
E∼E1

dEρ(E)|C(1)
n |2,

=

∫
dEnρ(En)Y sin2(

En − E1

2~
t)
|Vni|2

|En − Ei|2
,

with

Limα→∞
1

π

sin2(αx)

αx2
= δ(x),∫ ∞

−∞

sin2 ωt

ω2
dω = πT,

resulting in ∑
n

|C(1)
n |2 = |Vni|2

πt

2~
δ(En − Ei)

The transition rate from a state i to a state n (transition per unit of time)
is giving by the Fermi golden rule, which is a law of conservation of energy,

dρ

dt
=

d

dt

∑
n

|c(1)
n |,

Wi→n =
2π

~
|V̄ni|2ρ(En),

Wi→n =
2π

~
|Vni|2δ(En − Ei).

The second order of this pertubation theory is giving by

C(2)
n = (− i

~
)2
∑
m

VnmVmi

∫ t

0

dt′eiωnmt
′
∫ t′

0

dt
′′
eiωnit

′′

,

=
i

~
∑
m

VnmVmi
En − Ei

intt0(e−iωnit
′ − eiωnmt′)dt′.

The transition from a state i to a state n for the second order can be seen
as virtual transitions between the states, where the energy not need to be
conserved.

Wi→n =
2π

~
|Vni +

∑
m

VnmVmi
Ei − Em

|2ρ(En)

∣∣∣∣∣
En=Ei

.
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Harmonic Perturbations

In harmonic perturbations, the appreciate transitions occurs only if En ∼ Ei.
For a harmonic oscillator, ωn → ωni ± ω. A example is an atom exposed
to an uniform time dependent electric field, giving the perturbation E(t)d.
Problems of this kind gives perturbation of the form V (t) = p(t)Q, where
p(t) is a numerical function and Q is an observable.

V (t) = V0e
iωt + V †0 e

−iωt, for t > 0.

0, for t < 0.

For first order of the pertubation theory, one has

C(1)
n = − i

~

∫ t

0

Vni(t
′)eiωnit

′
dt′,

=
1

~

(
1− ei(ω+ωni)t

ω + ωni
V0ni +

1− ei(ωni−ω)t

−ω + ωni
V †0ni

)
,

which are applicable only if E0
k − E0

n 6= ±~ω or ωni = En−Ei
~ 6= ω. For the

limits t→∞, one has the two possibilities. Hence, |C1
n|2 is appreciable for

• Stimulated Emission: ωni + ω ∼ 0, or En ∼ E1 − ~ω.

• Absorption: ωni − ω ∼ 0, or En ∼ E1 + ~ω.

Wi→n =
2π

~
|̂V0ni|

2

ρ(En),

Wi→n = |V †0ni|2.

For a single level (since V †0ni = V0in),

Wi→n =
2π

~
(|V0ni|2)δ(En − Ei ± ~ω).

Resulting that the probabilities of transition are the same,

Wi→n

ρ(En)
=
Wn→i

ρ(Ei)

The time perturbation can be regarded as a source of energy. For con-
tinuous generalization, we have E0

min − Eν
n, where Emin is the lowest of the

continuous states. The probability of transition per unit of time is:

dωfi =
2π

~
|Ffi|2δ(Ef − E0

i − ~ω)dν.
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1.7 Other Techniques

1.7.1 The WKB Approximation

From the Schroedinger equation, one can input a solution of the kind

ψ = e
i
~σ, (1.7.1)

resulting in (when~→ 0) ,

1

2m
(∇σ)2 = E − U.

Expanding σ as

σ = σ0 + ~σ1 + ~2σ2...

the zeroth order will be

(~0)→ 1

2m
σ2

1 = E − U,

σ0 = ±
∫ x√

2m(E − U(x))dx = ±
∫ x

p(x)dx.

Equation (1.7.1) has the classical action in its exponential. For the con-
ditions ~σ′0 � σ2

0 or p̄′ � p2 or k′ � k2, it is trure that 1
k

= λ
2π
� 1, and one

has

dp

dx
=

d

dx

√
2m(E − U) = −m

p

U

dx
=
mF

p
,

F =
pp′

m
where p′ =

mF

p
,

~∂p
∂x
� p2~mF

p3
� 1,

∂k

∂x
� k2.

thus, for p = 0, we have the violation of the classical turning points.The first
order of this expansion is

(~1)→ σ′0σ
′
1 +

1

2
σ′′0 = 0,

σ′1 = −1

2

σ′′0
σ′0

= −1

2

p′

p
,

σ1 = −1

2
ln p.
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The wavefunction is given by

ψ =
c1√
χ
e−

i
~
∫ x χ(x)dx +

c2√
χ
e−

i
~
∫ x χ(x)dx.

The second order will be

(~2)→ σ′0σ
′
2 +

1

2
σ′22 +

1

2
σ′′1 = 0,

σ2 =
1

4

mF

p3
+

1

8
m2

∫
F 2

p5
dx,

ψ =
const
√
p

(
1− 1

4
im~

F

p3
− 1

8
i~m2

∫
F 2

p5
dx
)
e
i
~
∫
pxdx.

Connection Formulas

One can use the classical approximation for the turning points to connect
the solutions. The connection formulas, for a and b, are the turning points
in E = V (a) = V (b), for x� 0,

a→ ψ(x) =
A√
χ(x)

e−
∫ x
a χ(x)dx +

B√
χ(x)

e
∫ x
a χ(x)dx,

b→ ψ(x) =
C√
χ(x)

e−
∫ x
a k(x)dx +

D√
χ(x)

e
∫ x
a k(x)dx.

For x ∼ a,

V (x)− E ∼ g(x− a),

−~
2m

ψ′′ + g(x− a)ψ = 0,

z = (
2mg

~2
)
1
3 (x− a).

The solutions are ψ = Ai(z) and ψ = Bi(z) . Using the limit |~ dp
dx
� p2|,
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one has |z| � 1
2
,

Ai(z) =
1

2
√
π
z−

1
4 e−ξ,

Bi(z) =
1

2
√
π
z−

1
4 eξ,

where ξ =
2

3
|z|

3
2 ,

Ai(z) ∼ 1√
π

cos(ξ − π

4
),

Bi(z) ∼ − 1√
π

sin(ξ − π

4
).

For z < 0, ∫ a′

x

k(x)dx =

∫ a

x

√
2m(E − V (α)dx,

=
2

3
(
2mg

~2
)
1
2 (a− x)

3
2 ,

= ξ.

Hence, when x→∞,

2A√
k(x)

cos(

∫ a

x

k(x)dx− π

4
)− B√

k(x)
sin(

∫ a

x

k(x)dx− π

4
) =

A√
χ(x)

e−
∫ a
x χ(x)dx − B√

χ(x)
e
∫ a
x χ(x)dx.

Repeating the same procedure for x− a→ b− x (reflected solutions) we
have the whole solution.

Bound States

For bound stater, there are two additional conditions,

ψ =
1√
χ(x)

e
∫ b
x χ(x)dx,

ψ =
2√
k(x)

cos(

∫ x

a

k(x)dx− π

4
).
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Making zero the wrong increasing/decreasing parts, we normalize them
and we have the bound states. Requiring the cosine part to be zero and

∫ a

b

k(x)dx = π(n+
1

2
.

We then minimize this, in such way that the phase space results in

2

∫ a

b

pdx = (n+
1

2
)~π.

Example: Triangular Potential Well.

The problem of the triangular potential well is given by

V (x) = g(x),

−~2

2m
ψ′′ + g|x|ψ = Eψ,

z = (
2mg

~2
)
1
3 (x− F

g
).

The wavefunction is

ψ = A1(z),

ψn(x) = A1[(
2mg

~2
)
1
3 (x− F

g
)],

= A′i[−(
2mg

~2
)
1
3
En
g

],

= 0.

The eigenenergies are

2

∫ E
g

0

√
2m

~
(E − gx)dx = (n+

1

2
)π.
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Example: Instanton in a Double Potential Well.

Let us consider the example of an instanton in a double well potential, which
solutions are

ψ± =
1√
2

[ψ0(x)± ψ0(−x)],

ψ′′0 +
2m

~2
(E0 − V (x))ψ0 = 0,

ψ′′± +
2m

~
(E± − V (x))ψ± = 0

Multiplying them and integrating over the infinite yields∫ ∞
0

(ψ′′0ψ± − ψ′′±ψ0) +
2m

~2
(E0 − E±)

∫ ∞
0

dxψ0ψ± = 0,

ψ±(x) =
1√
2

(ψ0(x)± ψ0(−x)),

ψ′±(x) =
1√
2

(ψ′0(x)± ψ′0(−x)),

results in

−
√

2ψ′0ψ0 +
2m

~2
(E0 − E±

)

1√
2

= 0,

E± − E0 = ∓~2

m
ψ′0ψ0|x=0.

We calculate ψ′0ψ0 using the WKB method

ψ0(x) =
A√
k(x)

cos(

∫ x

a

k(x)dx− π

4
),

1 =

∫ b

a

ψ2
0(x)dx = A2 ~τ

4m
,

where one can express it the classical oscillation frequency ω = 2π
τ

. The
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wavefunction and eigenenergies is then given by

ψ0(x) =

√
2mω

π~
cos

1√
k(x)

(

∫ x

a

k(x)dx− π

4
),

=
A

2
√
χ(x)

e
∫ x
a χ(x)dx,

=
A

2
√
χ(x)

χ(x)e
∫ x
a χ(x)dx,

ψ0ψ
′
0

∣∣∣
x=0

=
A2

4
e−2

∫ a
0 χ(x)dx,

=
mω

2π~
e−2

∫ a
0 χ(x)dx,

E± − E0 = ∓~ω
2π
e−2

∫ a
0 χ(x)dx.

The symmetrical splitting for x� 0, is

∆E =
~ω
π
e
∫ a
−a ,

where ~ω
π
∼ 2πf is the transmission amplitude, the frequency of trying to

penetrate: the particle can penetrate and then it splits the energy.

Transmission through the Barrier

The problem of the transmission through a barrier can be solved by dividing
it in three distint solutions for each region and then perfoming the connection
of these three parts,

ψ1(x) =
A√
k(x)

e−
∫ x
a k(x)dx +

B√
k(x)

e−
∫ x
a k(x)dx, (x� a),

ψ2(x) =
C√
χ(x)

e
∫ x
a χ(x)dx +

D√
χ(x)

e
∫ x
a χ(x)dx, (a� x� b),

ψ3(x) =
F√
k(x)

ei
∫ x
a k(x)dx +

G√
k(x)

e−
∫ x
a k(x)dx, (x� b),

(
A
B

)
=

1

2

(
2θ + 1

2θ
i(2θ − 1

2θ
)

−i(2θ − 1
2θ

) 2θ + 1
2θ

) (
G
F

)
,
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where

θ = e
∫ b
a χ(x)dx.

The transmission coefficient is

T =
|ψtrans|2vtrans
|ψinc|2vinc

=

∣∣∣∣∣ψT
√
KT

ψI
√
kI

∣∣∣∣∣ =

∣∣∣∣∣FA
∣∣∣∣∣
2

.

If G = 0,

A = M11F =
1

2
(2θ +

1

2θ
)F,

T =
1

|M11|2
=

4

(2θ + 1
2θ

)2
∼ 1

θ2
= e−2

∫ a
b χ(x)dx.

Example: Nuclear Fusion.

Classically only high energies allow nuclear fusion, however, in quantum me-
chanics, there is always a possibility of penetration. The potential and ener-
gies of this problem is

V =
Z1Z2e

2

x
,

E =
Z1Z2e

2

a
,

To solve it, we just integrate it from a to b,∫ 0

a

χ(x)dx =

√
2mE

~2

∫ 0

a

√
a

x
− 1dx,

=
Z1Z2e

2π

~V
.

The transmission coefficient is the dominant term which defines the prob-
ability of nuclear fusion,

T =
1

θ2
,

= e−2πZ1Z2alpha
c
V ,

which means that increasing the size of the nucleus, we have a reduction the
probability of transmission.
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Reflection by a Barrier

Classically we should have no turning point for a barrier with potential energy
bigger thant the energy of the particle,

ψ ∼ 1√
k(x)

e−
∫ x
0 k(x)dx,

V (x) = −1

2
ax2.

However, in quantum mechanics we find one turning point,

x0 = ±i
√

2E

a
,

which solving gives a reflection coefficient

R = |r|2,

= e−4 π

4π

√
ma

2E

a
,

= e−2πε,

where ε = E
~

√
m
a

.

1.7.2 The Adiabatic Approximation

An adiabatic approximation is valid in a system which gradually changes
conditions, allowing it to adapt its configuration, hence the probability den-
sity is modified by the process. If the system starts in an eigenstate of the
initial Hamiltonian, it will end in the corresponding eigenstate of the final
Hamiltonian.

H(t)Ψ = i~∂tΨ.
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You can solve it instantaneous, with asymptotically good solutions

H(t)Ψn(t) = En(t)Ψn(t),

Ψn = Ψne
− i

~Ent,

Ψ(t) =
∑
n

cn(t)Ψn(t)eiθn(t),

θn = −1

~

∫ t

0

E(t′)dt′,∑
n

ċnψne
iθn = −

∑
n

cnψ̇ne
iθn ,∑

n

ċnδnme
iθn = −

∑
n

cn〈Ψm|Ψ̇m〉eiθm ,

ċm = −
∑
n

cn〈Ψm|Ψ̇m〉ei(θn−θm),

resulting in

ḢΨn +HΨ̇n = Ėnψm + EnΨ̇.

So far, all the previous results were exacts. Now we multiply then by
〈Ψm|, giving

〈Ψm|Ḣ|Ψn〉+ Em〈|H|Ψ̇n〉 = Ėnδnm + En〈Ψm|Ψ̇n〉.

Supposing m 6= n, we get

cm(t) = cm(0)eiγm(t),

γm(t) = i

∫ t

0

〈Ψm(t′)| ∂
∂t′

Ψm(t′)〉dt′,

where the last is the Berry’s phase (geometrical). The phase of the adiabatic
approximation is constituted of a geometrical and a dynamics part. The final
solution is then

Ψ =
∑
n

Ψn(t)eiθn(t)eiγn(t)cn(0).
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Example: Spin-1
2

particle in a ~B changing slowing with t.

Let us consider a system of a spin-1
2

particle in a magnetic field which is
changing slowing with time,

i~∂tΨ = −µB(t)σΨ,

B(t) = B(sin θ cosφ, sin θ sinφ, cos θ).

In an adiabatic problem, first one has to solve the instantaneous time-
independent Hamiltonian and then diagonalize the equation. The eigenvalues
in this case will be: ∓µB(t) = E±(t). The phase results to be

θ±(t) = −1

~

∫ t

0

dt′ ImB(t′).

Diagonalizing it again gives the ground states for this metric,

χ+ =

(
cos θ

2

sin θ
2
eiφ

)
, χ− =

(
sin θ

2
e−iφ

− cos θ
2

)
.

Now, calculating the Berry’s phase in the system in the ground system,
results in

γ−(t) =

∫ t

0

dt′(sin
θ

2
eiφ,− cos

θ

2
)i∂t

(
sin θ

2
e−iφ

− cos θ
2

)
,

=

∫ t

0

dt′ sin2 θ

2
φ̇,

=
Ω

2
,

which is the solid angle, and this term correspond to a piece of area (clearly
a geometrical phase).

1.7.3 Scattering Theory

The amplitude of scattering is can be writen as

f(k′, k) = − 1

4π

2m

~2
(2π)3

∫
eik
′x′

(2π)
3
2

V (x′)〈x′|ψ†〉,

= − 1

4π
(2π)3 2m

~2
〈k′|V |ψ†〉.
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The differential cross section is given by the number of scattered particles
into dΩ per time over the number of incident particles crossing per time.

dσ

dΩ
dθ =

r2|jscat|
|jinc|

= |f(k′, k)|2dω

The Born Approximation

If the effect of the scatterer is not too strong we can make

〈x′|ψ†〉 → 〈x′|φ〉 =
eikx

′

(2π)
3
2

The approximation for the amplitude is then

f(k′, k) = −2m

~2

1

q

∫ ∞
0

rV (r) sin qrdr.

The condition of applicability is given when 〈x|ψ†〉 is not very different
from 〈x|φ〉. At the center of the scattering, x ∼ 0, is

|2m
~2

1

4π

∫
d3x′

eikr
′

r′
V (r′)eikx

′ | � 1.



Chapter 2

Anyons

"Composites formed from charged particles and vortices in

(2+1)-dimensional models or fluxes tubes in 3-dimensional

models, can have any (fractional) angular momentum.

The statistics of these objects (spins) interpolates

continuously between the usual boson and fermion cases."

(Frank Wilczek, 1982, when we invented the name anyon)

Anyons are quasiparticles in a two-dimensional space. Anyons and charge
fractionalization typically occur in strongly correlated electron systems with
broken time reversal symmetry. Strong correlated means that many-body
wavefunctions Ψ cannot be written as a single Slater determinant of the
constituent electron single-particle states.

The world lines of two anyons cannot cross or merge. This allows braids
to be made that make up a particular circuit. In the real world, anyons
form from the excitations in an electron gas in a very strong magnetic field,
and carry fractional units of magnetic flux in a particle-like manner. This
phenomenon is called the fractional quantum Hall effect.

In 2005, [GCZ05], Vladimir Goldman, Fernando E. Camino, and Wei
Zhou were said to have created the first experimental evidence for using
fractional quantum Hall effect to create actual anyons, although others have
suggested their results could be the product of phenomena not involving
anyons. It should also be noted that nonabelian anyons, a species required
for topological quantum computers, have yet to be experimentally confirmed.

The original proposal for topological quantum computation is due to
Alexei Kitaev in 1997, [KIT97].

75



76 CHAPTER 2. ANYONS

2.1 Aharonov-Bohm effect

2.2 Fractional Quantum Hall effect

2.3 First Detection of Anyons at Stony Brook



Chapter 3

Quantum Mechanics of an
Open System

3.1 Density Matrix Revisited

3.2 The Schmidt Decomposition and Purifi-

cation

3.3 Models of Measurement and Decoherence

3.4 Superoperators

3.5 Graphic Notation for Tensors

3.6 Trace Distance and Fidelity
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Part II

Fundamentals of Computer
Science
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Chapter 4

Introduction to Classical
Computation

Quantum complexity theory has emerged alongside

the first efficient quantum algorithms in an attempt to

formalize the notion of an efficient algorithm. In analogy

to classical complexity theory, several new quantum

complexity classes have appeared. A major challenge

today consists in understanding their structure and the

interrelation between classical and quantum classes.

(Kempe, Kitaev, and Regev, 2008)

4.1 Turing Machines

The modern computer science starts with Alan Turing’s paper, in 1936,
[TUR36], where he developed the notion of we call a programmable com-
puter. He showed that there is a Universal Turing Machine that can be used
to simulate any other Turing machine. The Church-Turing thesis is given by

Any algorithm process can be simulated efficiently

using a probabilist Turing Machine.

The growing power of computer hardware was predicted by Gordon Moore,
1965, [MO65], known as the Moore’s Law, stating that computer power will
double for constant cost once every two years. This law have been correct,
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but it should stop in the next years, due the difficulty of size and to quantum
effects that begin to interfere in the functioning of the electric devices.

This is when quantum computation begins. While an ordinary computer
can be used to simulate a quantum computer, it appear to be impossible to
perform the simulation in an efficient way, therefore, quantum computers
offer a speed advantage over classical computers.

The term efficient or inefficient for algorithms is precisely defined by the
computational complexity theory. An efficient algorithm runs in polynomial
time to the size of the problem. An inefficient algorithm runs in superpoly-
nomial (e.g. exponential) time.

4.2 Classical Circuits

Any classical circuit can be replaced by an equivalent circuit with only re-
versible elements, by using the Toffoli gate. Two of the bits are control bits
and one is the target bit, fliped if both control bits are 1. Applying the
Toffoli gate twice make the state to return to its inital state,

(a, b, c)→ (a, b, c⊕ ab)→ (a, b, c).

4.3 Complexity Classes

4.3.1 P

4.3.2 NP

Eventually we hear about the claimed proof of PN = P or PN 6= P . This
problem, however, is still open. A interesting list of claimed proofs was re-
sumed on [WO11] and a compendium of NP optimization problems,[CK05],
collects approximability results of the NP -hard optimization, since no NP -
complete problem can be solved in polynomial time (unless P = NP ).

4.3.3 PSPACE

PSPACE contains NP and P and is defined for those problems that a classical
computer can solve only using a polynomial amount of memory but requires
an exponential number of steps. An example of problems are the n×n Chess
or Go.
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4.3.4 BQP

BQP (functions computable with bounded error,given quantum resources, in
polynomial time), defines how the class of problems that quantum computers
would solve efficient. This class includes all the P problems and also a few
other NP problems (e.g. factoring and and discrete logarithm problem).
However other NP and all NP-complete problems are believed to be outside
BQP, which means that even our quantum computer may require more than
a polynomial number of step to solve the problems.

BQP is also believed to be bigger than NP, which means that quantum
computers may solve some problems faster than classical computers can check
the answers.

4.4 Complexity of Arithmetic Operations

4.5 Probabilistic Algorithms
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Chapter 5

Classical Cryptography

5.1 RSA Algorithm

The RSA algorithm involves three steps:

1. Key Generation: RSA involves a public and a private key. The
message encrypted with the public key can only be decrypted using
the private key. The algorithm for generate the keys is

(a) Choose two disting prime numbers p, q, with similar bit-length.

(b) Compute n = pq, where n is the modulus for both the public and
private keys.

(c) Compute the Euler’s Totient Function, φ(n) = (p− 1)(q − 1).

(d) Choose an integer e such that 1 < e < φ(n) and e, φ(n) are co-
primes, gcd(e, φ(n)) = 1.

(e) e is the public key exponent. d = e−1( mod φ(n)) is private
key exponent. The public key is the modulus n and encryption
(expoent) e. The private key is decryption (expoent) d.

2. Encryption: Alice transmits the public key (n, e) to Bob, which want
to send a message M back to Alice. M is a integer 0 < m < n, then he
compute the ciphertext c as c = me( mod n), and transmit it to Alice.

3. Decryption: Alice recover m from c, using her private key expoent d
computing m = cd( mod n). She recovers M .
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Part III

Quantum Information and
Computation
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Chapter 6

The Advent of the Quantum
Computation

6.1 History of Quantum Information and Com-

putation

Any sufficiently advanced

technology is indistinguishable

from magic. (Arthur C. Clarke)

In 1985, [DEU85], David Deutsch attempted to define a computation
device that would be capable of efficiently simulating a physical system,
which means to consider a device to simulate quantum mechanics. Without
an answer to this problem, he tried to find out whether it was possible to a
quantum computer to efficiently solve computational inefficient problems in
a classical computer. In 1994, Peter Shor, [SHO94] demonstrated that the
problem of finding the prime factor of an integer, the discrete logarithmic
problem, could be solved efficiently on a quantum computer, showing that
quantum computers are more powerful than Turing machines. In 1995, Lov
Grover, [GRO96] provided a faster algorithm to database search.

In terms of information theory, the famous paper from Claude Shannon,
in 1948 [SHA48], defined mathematically the classical concept of informa-
tion in two theorems: the noiseless channel coding theorem (how to store
an output from an information source) and the noisy channel coding theo-
rem (how much information is possible to transmit through a noisy channel).
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Half century later, in 1995, [BEN73], Ben Schumacher1 gives an analogue
to Shannon’s theorem for quantum information theory and defines the term
qubit as the equivalent to bit.

In quantum computation, a quantum gate of N qubits can be expressed
as a vector 2N dimensional. Quantum gates are unitary transformations that
act on just a few qubits at a time.

In 1961, Landauer, [LAND61], claimed that ”Erasure of information is a
dissipative/irreversible process”, it always involves compression of the phase
space. The logic gates to perform computation are typically irreversible, for
example the NAND gate, where two inputs become output, and the output
cannot recover the inputs. One needs at least the thermodynamical thresh-
old, W = kBT ln 2, to operate the gate.

This conclusion leads to the concept of reversible computation which
avoids erasure of the information and in 1973, Bennett, [BEN73], claimed
that Any computation can be formed using only reversible steps, with no
dissipation”. Similarly to NAND, but reversible, we can create the Toffoli
gate, which flips the third bit if the first and second are one. However,
this process generates a lot of extra necessary information, which could be
reconverted on reversible operations. Today’s irreversible computers have
dissipation much bigger than the thermodynamical threshold kBT ln 2 per
gate. For future considerations, however, it’s important to consider this
limit to prevent components from melting.

In 1964, [BE64], Bell’s published his famous paper predicting that quan-
tum mechanics cannot be reproduced by any local hidden variable theory.
Therefore, quantum information can be encoded in non local correlations
between different parts of a physical system.

In classical computation, the required to find the factors p and q on
n = pq is believed to be super polynomial in log(n), for example, n = 10500

would be T (n) = e500 ln 10. Therefore the factoring problems was considerable
intractable, since it cannot be solved in a time bounded by a polynomial
size of the input. However, in 1995, Shor, [SHO94], showed that quantum
computing can factor in a polynomial time, O[(lnn)3], as we shall see in the
next chapters.

Kitaev, Shen and Vyalyi, [KSV02], start their book introducing one of
the main motivation on quantum computation: the motivations given by the
computational complexity theory. Since the time of Charles Babbage, comput-

1As a friend of mine likes to tell, Ben was a student from Hendrix College.
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ers consist of bits, which are variables taking values 0 and 1, and a program,
which is a sequence of operations using bits. The classical computation is
however almost reaching its physical limitation, since we cannot imagine a
component or transistor smaller then the size of an atoms, in the order of 1
Angstrom, or 10−10 meters, or a clock frequency greater than the frequency
of atomic transitions, in the order of 1015 Hz.

The history of quantum information and computation started in late 70’s,
where many techniques for controlling single quantum systems were devel-
oped. In the early 80’s, Feynman [FEY82] and Deutsch [DEU85], published
the ideas of a quantum system to solve a complex computational problem.
Deutsch introduced the Quantum Turing Machine and then the quantum
circuit. A timeline is proposed below.

1970 Landauer, [LAND61], demonstrated importance of reversibility for minimal
energy computation.

1973 Stephen Wiesner invents conjugate coding, [WIE73].

1973 Bennett showed the existence of universal reversible Turing machines, [BEN73].

1973 Holevo publishes paper showing thatn qubits cannot carry more than n
classical bits of information (Holevo’s theorem).

1975 Poplavskii publishes Thermodynamical models of information processing (in
Russian).

1975 Uspekhi Fizicheskikh Nauk showed the computational infeasibility of sim-
ulating quantum systems on classical computers, due to the superposition
principle.

1976 Ingarden publishes paper entitled Quantum Information Theory, one of the
first attempts at creating a quantum information theory, showing that Shan-
non information theory cannot directly be generalized to the quantum case.

1981 Toffoli-Fredkin designed a universal reversible gate for Boolean logic.

1982 Benioff showed that quantum processes are at least as powerful as Turing
machines.

1982 Feynman demonstrated that quantum physics cannot be simulated effec-
tively on classical computers.

1984 Quantum cryptographic protocol BB84 was published, by Bennett and Bras-
sard, for absolutely secure generation of shared secret random classical keys.
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1985 Deutsch showed the existence of a universal quantum Turing machine, [DEU85].

1989 First cryptographic experiment for transmission of photons, for distance
32.5cm was performed by Bennett, Brassard and Smolin.

1991 Ekert at the University of Oxford, invents entanglement based secure com-
munication.

1993 Bernstein-Vazirani-Yao showed the existence of an efficient universal quan-
tum Turing machine.

1993 Dan Simon invented an oracle problem for which a quantum computer would
be exponentially faster than conventional computer. This algorithm intro-
duced the main ideas for Shor’s algorithm.

1993 Quantum teleportation was discovered, by Bennett et al.

1994 Cryptographic experiments were performed for the distance of 10km (using
fibers).

1994 Quantum cryptography went through an experimental stage.

1994 Shor discovered a polynomial time quantum algorithm for factorization,
[SHO94].

1995 DiVincenzo designed a universal gate with two inputs and outputs.

1995 Cirac and Zoller demonstrated a chance to build quantum computers using
existing technologies.

1996 Shor showed the existence of quantum error-correcting codes, [SHO96].

1996 Grover invented the quantum database search algorithm.

1996 The existence of quantum fault-tolerant computation was shown by P. Shor.

1997 Cory, Fahmy and Havel, and at the same time Gershenfeld and Chuang at
MIT published the first papers realizing gates for quantum computers based
on bulk spin resonance, which the technology based on a nuclear magnetic
resonance.

1997 Kitaev described the principles of topological quantum computation as a
method for combating decoherence, [KIT97].

1997 Loss and DiVincenzo proposed the Loss-DiVincenzo quantum computer.
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1998 First experimental demonstration of a quantum algorithm, solving the Deutsch’s
problem, by Jones and Mosca.

1998 First working 3-qubit NMR computer.

1998 First execution of Grover’s algorithm on an NMR computer.

1999 Braunstein showed that there was no mixed state quantum entanglement in
any bulk NMR experiment.

2000 First working 5-qubit NMR computer, first execution of order finding (part
of Shor’s algorithm), and first working 7-qubit NMR.

2001 First execution of Shor’s algorithm.

2001 Linden and Popescu proved that the presence of entanglement is a necessary
condition for a large class of quantum protocols.

2001 Knill, Laflamme, and Milburn, launch the field of linear optical quantum
computing.

2002 The Potts model and the BMW algebra, by Read.

2003 Pittman and O’Brien demonstrate quantum controlled-not gates using only
linear optical elements.

2004 First working pure state NMR quantum computer.

2005 First quantum byte, or qubyte, is created.

2005 Quantum Potts nets, by Fradkin.

2006 New classical loop modes by Jacobsen.

2006 Caging of a qubit in a buckyball and demonstrating of quantum bang-bang
error correction.

2006 Search of a database without running a quantum computer.

2006 Braunstein demonstrated the quantum telecloning.

2006 Two dimensional ion trap developed for quantum computing.

2006 Seven atoms placed in stable line, a step on the way to constructing a
quantum gate.
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2006 Device that can manipulate the up/down spin-states of electrons on quan-
tum dots.

2007 First use of Deutsch’s Algorithm in a cluster state quantum computer.

2007 Demonstration of controllably coupled qubits.

2007 Diamond quantum register developed.

2007 Quantum effects demonstrated on tens of nanometers.

2007 Bose-Einstein condensate quantum memory.

2007 The BMW algebra, the chromatic algebra, and the golden identity, with V.
Krushkal.

2008 Graphene quantum dot qubits.

2008 Control of quantum tunneling.

2008 Entangled memory developed.

2008 Superior NOT gate developed.

2008 Superior quantum Hall Effect discovered.

2008 Quantum Potts loop models.

2008 Qubit stored for over 1 second in atomic nucleus.

2009 Lifetime of qubits extended to hundreds of milliseconds.

2009 Quantum entanglement demonstrated over 240 microns.

2009 Qubit lifetime extended by factor of 103.

2009 Shor’s algorithm on a silicon photonic chip.

2009 Google collaborates with D-Wave Systems on image search technology using
quantum computing.

2010 Ion trapped in optical trap.

2010 Single electron qubit developed.
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6.2 One Qubit

The basic unit of quantum information is the qubits, which lives in a Hilbert
space C2, with basis {|0〉, |1〉}. The difference between bits and qubits is that
a qubit can be in a state other than 0 or 1, but also in a superposition of
states. Therefore, a single qubit can be given by a wavefunction

|ψ〉 = A|0〉+B|1〉

and its respective bra 〈ψ|. We find A = 〈0|ψ〉, B = 〈1|ψ〉, both being the
complex amplitudes for finding the particles with spin up or down. If we
measure this qubit in the computational basis |0〉, |1〉, the probability of
obtaining |0〉 is AA∗ and the probability of obtaining |1〉 is BB∗. We see
that the spatial aspects of these wavefunctions are suppressed, which means
that the particles are fixed, such as quantum dots.

Sometimes we can have system defined on other basis besides the previous
computational basis, such as the familiar states

|+〉 =
1√
2
|0〉+

1√
2
|1〉

and

|−〉 =
1√
2
|0〉 − 1√

2
|1〉,

which are orthogonal and normalized 2. If we want to express |ψ〉 in this
basis, such as |ψ〉 = α|+〉 + |β〉, we find α and β as the inner products
α = 〈+|ψ〉 and β = 〈−|ψ〉3.

If we measure the state |ψ〉 in the |+〉 and |−〉 basis, the probability of
getting |+〉 is αα∗ and the probability of getting |−〉 is ββ∗.

The Bloch Sphere

One useful way of thinking about qubits is in a geometric representation
called Bloch sphere. Since |A|2 + |B|2 = 1, we can rewrite our superposition
state as

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2

)
,

2〈+|−〉 = 0 and 〈±|±〉 = 1.
3We can prove it using explicitly the orthonormality of the basis.
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6.3 Two Qubits

We can write a two qubit wavefunction as |ψ12〉 = |00〉+|01〉+|10〉+|11〉 which
are the tensorial representation of two qubits of the form |φ1〉 = a1|0〉+ b1|1〉
and |φ2〉 = a2|0〉+ b2|1〉,

|φ1〉 ⊗ |φ2〉 = a1a2|00〉+ a1b2|01〉+ a2b1|10〉+ b1b2|11〉.

Qubits Evolution

The manipulation of a qubit is given by the unitary 2×2 matrices U , which is
a linear combination of the Pauli matrices. The unitary operators, or gates,
manipulate the qubit states. Being unitary allows we calculate the quantum
evolution of our wavefunction |ψ〉: the new state will be |ψ′〉 = U |ψ〉.

A Hadamard matrix is a square matrix whose entries are either +1 or 1
and whose rows are mutually orthogonal. The Hadamard gate is a reflection
about the line θ = π/8. A Hadamard matrix H of order n satisfies

HHT = nIn. (6.3.1)

We express the two qubit unitary H ⊗ I or I ⊗H4 in terms of the basis
|00〉, |01〉, |10〉, and |11〉, which is a 4 × 4 matrix. The evolution of |ψ12〉 is
given by |ψ′12〉 = (H ⊗ I)|ψ12〉.

Let us write

H =

[
1√
2

1√
2

1√
2
− 1√

2

]
Applying H ⊗H to |ψ12〉

H ⊗H|ψ12〉 =


1
2

1
2

1
2

1
2

1
2
−1

2
1
2
−1

2
1
2

1
2
−1

2
−1

2
1
2
−1

2
−1

2
1
2




1
1
1
1

 = |00〉

Therefore the probability of getting |00〉 is one and zero for the other
three states.

4H ⊗ I and I ⊗H commute.
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6.3.1 Bell States

The Bell basis, or EPR pair, is as set of orthonormal four 2-qubit wavefunc-
tion |00〉+ |11〉. In general, they can be written as

|Ψ+〉 =
1√
2

(
|01〉+ |10〉

)
, |Ψ+〉 =

1√
2

(
|01〉 − |10〉

)
, (6.3.2)

|Φ+〉 =
1√
2

(
|00〉+ |11〉

)
, |Φ+〉 =

1√
2

(
|00〉 − |11〉

)
. (6.3.3)

We can rearrange in our previous basis as

|00〉 =
1√
2

(
|Φ+〉+ |Φ−〉

)
, (6.3.4)

|01〉 =
1√
2

(
|Ψ+〉+ |Ψ−〉

)
, (6.3.5)

|10〉 =
1√
2

(
|Ψ+〉 − |Ψ−〉

)
, (6.3.6)

|11〉 =
1√
2

(
|Φ+〉 − |Φ−〉

)
. (6.3.7)

The two-qubit evolution matrix U has as columns Φ+,Ψ+,Φ−,Ψ− and the
rows are the computational basis. To perform a measurement in a different
basis than the computational basis, we use the unitary evolution followed by
a measurement in the computational basis, i.e. we find

U †|ψ〉 =


〈Φ+|
〈Ψ+|
〈Φ−|
〈Ψ−|

 |ψ〉 =


〈Φ+|ψ〉
〈Ψ+|ψ〉
〈Φ−|ψ〉
〈Ψ−|ψ〉


The Bell states has a central role in quantum teleportation and superdense

coding, as we shall see soon. After we measure the first qubit, the result of
the second qubit will always give the same result as the first qubit, a typical
quantum correlation.
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6.4 Three to n-Qubits

6.4.1 GHZ State

The Greenberger-Horne-Zeilinger state is a type of entangled quantum state
which involves at least three subsystems. It has the general form

|GHZ〉 =
|0〉⊗M + |1〉⊗M√

2
. (6.4.1)

Therefore, for three-qubit entangled wavefunction we have

|GHZ〉 =
|000〉+ |111〉√

2
. (6.4.2)

Projectors and Probabilities

Let us calculate the probability of the wavefunctions on |000〉, |111〉, measur-
ing the first qubit in the computational basis|0〉 or |1〈. For this purpose we
use the projectors

P0 = |0〉〈0|, P1 = |1〉〈1|, (6.4.3)

and for three-qubits

P0 ⊗ I ⊗ I =
(
|0〉〈0|

)
⊗
(
|0〉〈0|+ |1〉〈1|

)
⊗
(
|0〉〈0|+ |1〉〈1|

)
,

= |000〉〈000|+ |001〉〈001|+ |010〉〈010|+ |011〉〈011|,

P1 ⊗ I ⊗ I =
(
|1〉〈1|

)
⊗
(
|0〉〈0|+ |1〉〈1|

)
⊗
(
|0〉〈0|+ |1〉〈1|

)
,

= |100〉〈100|+ |101〉〈101|+ |110〉〈110|+ |111〉〈111|.

Applying the projectors into the GHZ state we have

(P0 ⊗ I ⊗ I)|GHZ〉 =
1√
2
|000〉,

(P1 ⊗ I ⊗ I)|GHZ〉 =
1√
2
|111〉.
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To find the probabilities,

Pr(0) = 〈GHZ|(P0 ⊗ I ⊗ I)|GHZ〉

=
1

2
〈000|000〉,

=
1

2
,

P r(1) = 〈GHZ|(P1 ⊗ I ⊗ I)|GHZ〉

=
1

2
〈111|111〉

=
1

2
.

Projectors and Probabilities and Entanglement

We now want to measure to measure the first qubit in the basis |+〉 =
1√
2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). The projectors are

P+ = |+〉〈+|,

=
1√
2

(
|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|

)
,

P− = |−〉〈−|.

=
1√
2

(
|0〉〈0| − |0〉〈1| − |1〉〈0|+ |1〉〈1|

)
.

For three-qubits

P+ ⊗ I ⊗ I =
(
|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|

)
⊗
(
|0〉〈0|+ |1〉〈1|

)
⊗
(
|0〉〈0|+ |1〉〈1|

)
,

=
1

2

[
|000〉〈000|+ |001〉〈001|+ |010〉〈010|+ |011〉〈011|+

+ |000〉〈100|+ |001〉〈101|+ |010〉〈110|+ |011〉〈111|+
+ |100〉〈000|+ |101〉〈001|+ |110〉〈010|+ |111〉〈011|+

+ |100〉〈100|+ |101〉〈101|+ |110〉〈110|+ |111〉〈111|
]
,
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and

P− ⊗ I ⊗ I =
(
|0〉〈0| − |0〉〈1| − |1〉〈0|+ |1〉〈1|

)
⊗
(
|0〉〈0|+ |1〉〈1|

)
⊗
(
|0〉〈0|+ |1〉〈1|

)
,

=
1

2

[
|000〉〈000|+ |001〉〈001|+ |010〉〈010|+ |011〉〈011| −

− |000〉〈100| − |001〉〈101| − |010〉〈110| − |011〉〈111| −
− |100〉〈000| − |101〉〈001| − |110〉〈010| − |111〉〈011|+

+ |100〉〈100|+ |101〉〈101|+ |110〉〈110|+ |111〉〈111|
]
.

The probabilities are

Pr(+) = 〈GHZ|(P +⊗I ⊗ I)|GHZ〉,

=
1

2
,

P r(−) = 〈GHZ|(P− ⊗ I ⊗ I)|GHZ〉,

=
1

2
.

Clearly we see that in this basis, the second and third qubits are entangled
after the measurement.

Measuring all Three Qubits

To measure all three qubits in the |+〉, |−〉 basis we calculate the tensor
product of three projectors, PA ⊗ PB ⊗ PC . Most terms will be canceled in
the inner product with |GHZ〉, the only terms that survives are

PA ⊗ PB ⊗ PC ∝
(
|000〉〈000| ± |000〉〈111| ± |111〉〈111| ± ...

)
The probabilities of the eight possible outcomes will depend on the ± and
are calculated making 〈GHZ|PA ⊗ PB ⊗ PC |GHZ〉.

6.4.2 n Qubits

A system of n-qubits is a finite dimensional Hilbert space of dimension 2n.
We can represent the n qubits with the wavefunction

|φ〉 =
1√
2n

2n−1∑
x=0

|x〉.
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6.5 Quantum Gates and Quantum Circuits

6.5.1 One Qubit

Classical computer circuits are composed of wires, which transport informa-
tion, and logic gates, which make conversion of information. In quantum
computation the quantum gates represent unitary matrices that act on the
states. For qubit defined as

|ψ〉 =

[
A
B

]
,

the quantum NOT gate can be represented as

X =

[
0 1
1 0

]
,

and it swaps the 0 to 1 and 1 to 0. Other important two gates are Z and
Hadamard,

Z =

[
1 0
0 −1

]
,

and

H =
1√
2

[
1 1
1 −1

]
,

which is the square-root of the NOT gate.

6.5.2 n-Qubits

In classical computation, the NAND gate is called universal gate since any
function on bits can be computed from the composition of this gate (what
does not happen for NOT or XOR, for example). Thy also are non-invertible,
irreversible.

In quantum computation, the unitary quantum gates are always invert-
ible. The universal quantum gate is the controlled-NOT. The CNOT gate
has two input qubits, one is the control and the other is the target qubit. If
the control qubit is 1, the target qubit is flipped,

|A〉 • |A〉
|B〉 �������� |A⊕B〉
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UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


A circuit that swaps the states of two qubits can be written as

• �������� •
�������� • ��������

= ×
×

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


The measurement of a quantum circuit converts a qubit state to a classical

bit M , with some probability,

|Ψ〉 NM



 M

6.5.3 A Circuit for Bell States

We can construct a circuit with input any computational basis, |00〉, |10〉, |01〉
or |11〉, to output Bell states by joining a Hadamard and a CNOT gate,

x H •

y ��������
producing

IN OUT

|00〉 (|00〉+|11〉)√
2

|01〉 (|01〉+|10〉)√
2

|10〉 (|00〉−|11〉)√
2

|11〉 (|01〉−|10〉)√
2
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Example: Quantum Teleportation

Let us study a simple case of quantum teleportation (or the EPR paradox)
from our Bells states and what we know from quantum circuits.

1. Suppose A and B generated in the past an EPR pair, each taking one
qubit, and keeping their qubit when they separated.

2. In the present, A wants to deliver a quibit |ψ〉 to B and she doesn’t
know the state of this qubit (nether can she copies it because of the
no-cloning theorem). She only can send classical information to B.

3. By quantum computation, A can use the entangled EPR pair to send
|ψ〉 to B, with very small classical communication. The heuristic de-
scription of the process is

(a) A interacts |ψ〉 to her half of the EPR pair.

(b) A resumes the two quibits, obtaining 00, 01, 10 or 11.

(c) A sends the information to B.

(d) Depending on A’s message, B performs one of four operations on
his half EPR and recover |ψ〉

4. In mathematical description, the problems can represented by

(a) The state to be teleported is |ψ〉 = A|0〉 + B|1〉. Supposing their
EPR state is |00〉+ |11〉The input in the circuit is

|ψ0〉 = |ψ〉|EPR〉 =
1√
2

[
A|0〉(|00〉+ |11〉) +B|1〉(|00〉+ |11〉)

]
,

where only the third qubit belongs to B.

(b) A sends her state to a CNOT gate,

|ψ1〉 =
1√
2

[
A|0〉(|00〉+ |11〉) +B|1〉(|10〉+ |01〉)

]
.

(c) Then she sends to a Hadamard gate,

|ψ2〉 =
1√
2

[
A(|0〉+ |1〉)(|00〉+ |11〉) +B(|0〉 − |1〉)(|10〉+ |01〉)

]
,

which giver four terms and gives the four possibility of measure-
ments by A. The first two qubits are from A and the last quibit
will be B’s state.
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(d) Depending on this outcome, B’s qubit will be one of these four
possible states. Knowing A’s result, B can recover ψ〉 by applying
the appropriate gate. For example, if A measures 01, B applies
X gate to recover 00 (which we’ve used in this example). What
prevents the fact that information travels faster than light is that
for B find his outcome, he needs to know A’s measurement.

Example: Quantum Toffoli Gate

The Toffoli gate can be used as a quantum logic gate, permutating the basis
in the same way as the classical version.

•
•
��������

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


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Entanglement

7.1 The Einstein-Podolsky-Rosen Paradox

7.2 Bell inequalities

7.3 Quantum Games without Communication

7.4 Quantum Teleportation
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Chapter 8

Quantum Circuits

8.1 Reversible Classical Computation

8.2 Stony Brook: Likharev’s First Computer

Model based on Electronic Devices

8.3 Precision

8.4 Universal Gate Sets
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Chapter 9

Quantum Algorithms

9.1 Quantum Parallelism

In 1985, [DEU85], Deutsch stated that ”Quantum computation can best re-
alize its computational potential by invoking quantum pararelism”.

Quantum parallelism is one of the principal characteristics of many quan-
tum algorithms, allowing quantum computers to evaluate a function f(x) for
many values of x at the same time. The steps are the following:

1. We consider the input states

|0〉+ |1〉√
2

,

and

|0〉.

2. We apply a transformation Uf that will result on the output state

|0, f(0)〉+ |1, f(1)〉√
2

,

which contains information about both f(0) and f(1).

3. Quantum parallel evaluation of a function with an n bit input x and
1 bit output, f(x), can be performed by preparing n + 1 qubit states
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|0〉⊗n|0〉, and then applying Hadarmard transformations (H⊗n) to the
first n qubits, followed by Uf . We end up getting the state

1√
2n

∑
x

|x〉|f(x)〉.

9.2 The Class BQP

9.3 Grover’s Search Algorithm

9.4 Lower Bounds for Blackbox Problems

9.5 Simon’s and Shor’s Algorithms

9.6 Phase Estimation

9.7 Quantum Fourier Transform



Chapter 10

Fault-Tolerant Quantum
Computation

The Physical realization of a quantum computer is a big challenge. One open
problems is decoherence, which is the non local correlations of the environ-
ment to our quantum system, and systematic errors in unitary transforma-
tions. Quantum gates form a continuum, U = U0(1 + O(ε)). In classical
computers, the errors are attenuated by cooling, but this process is not suit-
able in quantum computation.

The type of errors in quantum computation are:

• Phase Errors: |0〉 → |1〉 and |0〉 → −|0〉.

• Small Errors: By a small ε in the continuous state A|0〉+B|1〉.

• Disturbance by Measurement.

• No-Cloning.

One of the most important contributions on fault-tolerant quantum com-
putation was given by P. Shor, [SHO96], in 1996, when he discovery the
fault-tolerant quantum computation: an arbitrary quantum circuit can be
simulated using imperfect gates, provided that these gates are close to the
ideal ones up to a constant precision δ. Many following references reproduce
what he discovered in that paper.

For any quantum computation with t gates, we show how to

build a polynomial size quantum circuit that tolerates O(1/ log^c t)
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amounts of inaccuracy and decoherence per gate, for some

constant c; the previous bound was O(1/t). We do this by showing

that operations can be performed on quantum data encoded by

quantum error-correcting codes without decoding this data.

(P. Shor, 1996)

The Shor’s quantum error-correcting code can be summarized as follow-
ing:



Chapter 11

Quantum Cryptography
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Chapter 12

Entropy and Information
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Chapter 13

The Reality of a Quantum
Computer

A first necessary condition for the construction of a quantum computer is
the reversibility: transition function mapping states to their successors at a
given later time should be one-to-one, with no increase in physical entropy.
The only potential way to improve the energy efficiency of computers beyond
the fundamental von Neumann-Landauer limit kBT ln(2), energy dissipated
per irreversible bit operation.

One of the main problems is the decohrence, which is irreversible/non-
unitary. Any operation must be quicker than the decoherence times. If the
error rate is small enough we can use a quantum error correction algorithm.

There are already many approaches for the realizaton of a quantum com-
puter,

• Superconductor-based quantum computers (including SQUID-based quan-
tum computers), [AVE08].

• Trapped ion quantum computer.

• Optical lattices.

• Topological quantum computer, [FKLW02].

• Quantum dot on surface (e.g. the Loss-DiVincenzo quantum com-
puter).

• Nuclear magnetic resonance.
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• Cavity quantum electrodynamics (CQED)

13.1 Concepts on Solid State

13.2 Concepts on Electronics

Clock Rate Rate in bits per second, given in hertz. A single clock cycle
goes between a logical zero and a logical one state. For classical compu-
tation, the clock of a CPU is normally determined by the frequency of
an oscillator crystal. The clock rate is only one of several factors that
can influence performance when comparing processors. Nowadays: the
limits to energy per transition are explored by reversible computing
(not yet implemented). CPU faster than 3.5 GHz is limit to thermo-
dynamic limits in current semiconductor process. In 2010 the fasted
clock speed microprocessor was z196, with 5.2 GHz.

Shunt Resistors Allows electric current to pass around another point in
the circuit.

13.3 Universal Adiabatic Quantum Computer

13.3.1 The Adiabatic Theorem

The adiabatic theorem to calculations:

• Complex Hamiltonian in the ground state.

• System with simple Hamiltonian initialized on ground state.

• Simple hamiltonian is adiabatically evolved to the complex hamilto-
nian.

• Theorem: system remains in the ground state.

• Get over of decoherence since system is in ground state (keeping tem-
perature of bath lower).
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13.4 Trapped Ions

Quantum state of each ion is a linear combination of the ground state and
a long-lived metastable excited state. A coherent linear combination of two
levels

A|0〉+Beiωt|1〉,

can survive t � τ excited states. The spontaneous decay is the dominant
form of decoherence.

The main difficult of this approach is to get two qubits interacting, and
the slow processing (∼ 100 kHz).

13.5 Nuclear Magnetic Resonance

Qubits are carried by certain nuclear spin in a particular molecule, with a
constant magnetic field. Gates are implemented as the dipole-dipole interac-
tions.

This method can be used to prepare an entangled state of 3 qubits.

13.6 Superconductor-based Quantum Comput-

ers

13.6.1 Josephson effect

Standard measure of voltage. Two superconductors separated by a thin
insulating layer can have tunneling of Cooper pairs of electrons through the
junction. The Cooper pairs on each side of the junction can be represented by
a wavefunction similar to a free particle (exponential). In the D.C. Josephson
effect, the current is proportional to the phase difference of the wavefunctions
and can exists in the junction in the absence of voltage.

In A.C., the Josephson junction oscillates with a characteristic frequency
proportional to V ,

f =
2e

h
V.

The A.C. Josephson effect is a voltage-to-frequency converter.
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13.6.2 SQUID

A Superconducting Quantum Interference Device is one of the most sensitive
detector for magnetic field. It can be used to the implementation of quantum
entanglement between a SQUID-qubit and a spin-qubit.

Flux Qubit A persistent current qubit is micro-sized loops of superconducting metal
interrupted by Joseph junctions. In the computer basis states it is the
circulating current clockwise or anti-clockwise. They are multiples of
the quantum flux unit. The Andreev interferometer probes the flux
qubits.

Charge Qubit Superconducting qubit whose basis states are charge states (presence
or absence of cooper pairs).

Phase Qubit First quantum machine last year.



Chapter 14

Topological Quantum
Computation

A 2D quantum system with anynioc excitations can be

considered as a quantum computer. Unitary transformations

can be performed by moving the excitations around each

other. Measurements can be performed by joining excitations

in pairs and observing the result of fusion. Such computation

is fault-tolerant by its physical nature. (Kitaev, 2008)

The idea of topological quantum computation is based on 2D anyons,
where the world lines cross over one another to form braid in 3D. Braids
form the logic gates to the computer and they are much more stable than
trapped quantum particles. Important papers in the subject on these aspects
were

• Kitaev, Fault-tolerant quantum computation by anyons (1997), [KIT97].

• Preskill and Ogburn, Topological quantum computation (1997).

• Preskill, Fault-tolerant quantum computation (1997).

• Mochon, Anyons from non-solvable groups are sufficient for universal
quantum computation (2003).

• Mochon, Anyon computers with smaller groups (2004).

• Freedman, Larsen, and Wang, A modular functo rwhich is universal
for quantum computation (2000).
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• Freedman, Kitaev, and Wang, Simulation of topological field theories
by quantum computers (2000).

A topologically ordered state has a non-local quantum entanglement. The
pattern of quantum entanglements cannot be destroyed by local perturba-
tions, reducing the effect of decoherence, and the information may last longer.

14.1 Topology of Anyons

A Quantum Group denotes various kinds of noncommutative algebra with
additional structure. In general, a quantum group is some kind of Hopf
algebra.

14.2 Abelian Anyons

Abelian anyon models can also be used for robust quantum memory.

14.3 Non-Abelian Anyons

A model of anyons is a theory of a two-dimensional medium with a mass gap,
where the particles carry locally conserved charges. We define the model by
specifying:

• A finite list of particle labels (a,b,c,). These indicate the possible values
of the conserved charge that a particle can carry. If a particle is kept
isolated from other particles, its label never changes.

• Rules for fusing (and splitting). These specify the possible values of
the charge that can result when two charged particles are combined.

• Rules for braiding. These specify what happens when two neighboring
particles are exchanged (or when one is rotated by 2π).



Appendix A

Mathematical Formulae

Quantum Mechanics

∂t(g
−1) = −g−1(∂tg)g−1

The spectrum of a operator S2 = 1 is s = ±1

The spectrum of a operator T 3 = 1 is t = 1, e
±2πi

3

eAeB = exp(A+B +
1

2
[A,B] +

1

12
([A, [A,B]]...)

Gaussian Integral

∫ ∞
∞

e−ax
2

=

√
π

a∫ ∞
∞

x2e−ax
2

=
1

2a

√
π

a
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Delta Function

∫ ∞
∞

f(x)δ(x− a)dx = f(a)

δ(x− a) = 0 for a 6= x

δ(ax) =
1

|a|
δ(x)

δ(x2 − a2) =
1

|a|
(δ(x+ a) + δ(x+ a))

δ(g(x)) =
∑
i

δ(x− xi)
g′(xi)

xδ′(x) = −δ(x)

δ(x2 + x− 2) = δ((x− 1)(x+ 2))∫
f(x)δn(x)dx = −

∫
∂f

∂x
δn−1dx

xnδn(x) = (−1)nn!δ(x)∫
f(x)δ′(x− a)dx = −f ′(a)∫ 1

1

δ(
1

x
)dx = 0

η

η2 + x2
→ πδ(x), when η → 0.

The Fourier expansion:

δ(x− a) =
1

2π
+

1

π

∞∑
n=1

(cos(na)cos(nx) + sin(na)sin(nx))

=
1

2π
+

1

π

∞∑
n=1

cos(n(x− a))
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A.1 Important Relations

M = eA = 1 + A+
A2

2
...

M = LimN→∞

(
1 +

A

N

)
.

ln(det M) = tr (Ln M).

det B =
∏
i

bi = e
∑
i log bi = e tr (log B).
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Appendix B

Notations Used in the
References

We shall call Kitaev and Shen and Vyalyi’s book, [KSV02], as KSV; Nielsen
and Chuang’s book, [NC00], as NC; and Preskill’s notes, [PRES01], as PR.

Symbols

SYMBOL KSV NC PR
LOGICAL OR ∨

LOGICAL AND ∧
NEGATION ¬

ADDITION MOD 2 ⊕
TRANSITION FUNCTION (Turing Machine) δ(., .)

A IMPLIES B A⇒ B
A IS LOGICALLY EQUIV TO B A⇔ B

n-th TENSOR OF DEGREE O M M⊗n

OPERADOR U TO A QUANTUM REGISTER U [A]
CLASSICAL BIT B
QUANTUM BIT B

FINITE FIELD Of q ELEMENTS Fq
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Matrices and Circuits

Measurement

NM





Hadamard

H =
1√
2

(
1 1
1 −1

)
Pauli-X

X =

(
0 1
1 0

)
Pauli-Y

Y =

(
0 −i
i 0

)
Pauli-Z

Z =

(
1 0
0 −1

)
Phase

S =

(
1 0
0 i

)
π/8

T =

(
1 0
0 i

)
CNOT

•�������� =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


SWAP

×
×

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


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Toffoli

•
•
��������

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


Complexity Symbols

COMPLEXITY CLASSES References in the Notes
NC 4.3.2
P 4.3.1

BPP ??
P/POLY ??

NP 4.3.2
BQP 4.3.4

NQNP ??
PSPACE 4.3.3

EXPTIME ??
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