AST 105
Intro Astronomy
The Solar System
The Greenhouse Effect

Light interacting with the atmosphere
Light vs. Matter (molecules)

1. Light of the right 'size' can interact with molecules

2. Light of increasing energy excites or breaks bonds of increasing strength
The Greenhouse Effect:
The key to warm atmospheres.

Visible light passes through the atmosphere.

Some visible light is reflected by clouds, haze, and the surface.

The surface absorbs visible light and emits thermal radiation in infrared.

Greenhouse gases absorb and reemit infrared radiation, thereby heating the lower atmosphere.
Greenhouse effect

- **Greenhouse gases**: H_2O, CO_2, CH_4 (methane).
 - **Earth**
 - 78% N_2, 21% O_2
 - 0.25% H_2O, 0.04% CO_2, 0.0002% CH_4
 \[T_{ave}(\text{no greenhouse}) = -16C; \quad T_{ave}(\text{greenhouse}) = 15C \]
 - **Venus**
 - 96% CO_2 - A lot of it!
 \[T_{ave}(\text{no greenhouse}) = -40C; \quad T_{ave}(\text{greenhouse}) = 470C \]
 - **Mars**
 - 95% CO_2 - Not much... but some
 \[T_{ave}(\text{no greenhouse}) = -56C; \quad T_{ave}(\text{greenhouse}) = -50C \]
STRUCTURE OF A PLANET'S ATMOSPHERE
If you remember this....

X-rays

X rays ionize (knock electrons off) almost any gas and dissociate (break apart) molecules when they are absorbed.

Heating & Destruction

Ultraviolet

Ultraviolet photons dissociate molecules when they are absorbed.

Heating & Destruction

Visible

Most visible-light photons are simply transmitted, though some are scattered. Blue light is scattered more than red light.

Transmission and Scattering

Infrared

Infrared photons are absorbed by molecules, causing them to vibrate and rotate.

Heating
... then you can understand the entire structure of a planet's atmosphere
Earth's Atmospheric Structure

Troposphere:
- lowest layer of Earth's atmosphere
- Temperature drops with altitude
- Warmed by infrared light from surface and convection
 - Weather!
Earth's Atmospheric Structure

Stratosphere:
- Temperature rises with altitude in lower part, drops with altitude in upper part.
- Warmed by absorption of ultraviolet sunlight by ozone.
 - Upper levels are too diffuse to absorb UV radiation.
Earth's Atmospheric Structure

Thermosphere:
- Layer starting at 80 km altitude
- Temperature rises with altitude
- X-rays from the Sun heat and ionize gases
 - (Top edge actually known as ionosphere)
Earth's Atmospheric Structure

Exosphere:
- Atmosphere gradually fades into space
- Temperature rises with altitude
 - atoms can easily escape into space
- Warmed primarily by X-ray light
 - Very low density, so most light gets through
Where does the greenhouse effect occur?

A. In the Stratosphere
B. In the Troposphere
C. In the Exosphere
D. In the Lithosphere
E. In the Thermosphere
Clicker Question

Where does the greenhouse effect occur?

A. In the Stratosphere
B. In the Troposphere
C. In the Exosphere
D. In the Lithosphere
E. In the Thermosphere
What would the temperature curve look like if Earth had MORE greenhouse gases?

A. The line in the troposphere would go straight up
B. The line in the troposphere would go to even higher temperatures at low altitudes
C. The bump in the stratosphere would be even warmer
D. The bump in the stratosphere would be cooler
E. The temperature in the thermosphere would be warmer
What would the temperature curve look like if Earth had MORE greenhouse gases?

A. The line in the troposphere would go straight up
B. The line in the troposphere would go to even higher temperatures at low altitudes
C. The bump in the stratosphere would be even warmer
D. The bump in the stratosphere would be cooler
E. The temperature in the thermosphere would be warmer
Comparing the atmospheric structure of different planets

• Consider the effects of:
 - Distance from the Sun
 - Reflectivity
 - Greenhouse gases
 - UV-absorbing gases

“No greenhouse” temperatures
What would happen to Earth’s temperature if it had a much larger reflectivity (but still had the same amount of greenhouse gases)?

A. The temperature would go up (warmer)
B. The temperature would go down (colder)
C. The temperature wouldn’t change
What would happen to Earth’s temperature if it had a much larger reflectivity (but still had the same amount of greenhouse gases)?

A. The temperature would go up (warmer)
B. The temperature would go down (colder)
C. The temperature wouldn’t change
Planetary temperatures

• In the absence of greenhouse gases, how would a planet’s average surface temperature depend on:
 - Size?
 - Distance from the Sun?
 - Rotation Rate?
How would Earth’s climate be different with no greenhouse gases?

• **Obvious difference?**
 - Surface would be colder (below freezing)

• **Subtle differences?**
 - Weather would be much different
 (Greenhouse effect causes atmospheric convection)
Planetary temperatures

In the absence of greenhouse gases, a planet’s average surface temperature depends on:

- **Size?**
 - Not really [external factors dominate - see below]

- **Distance from the Sun?**
 - Absolutely, closer means more radiation to heat!

- **Rotation Rate?**
 - Not really.
 - (Rotation rate can affect day/night differences, but we’re looking at averages)

- **Reflectivity?**
 - Absolutely, it’s how much light it reflects away
“No Greenhouse” Temperatures

<table>
<thead>
<tr>
<th>World</th>
<th>Average Distance from Sun (AU)</th>
<th>Reflectivity</th>
<th>“No Greenhouse” Average Surface Temperature*</th>
<th>Actual Average Surface Temperature</th>
<th>Greenhouse Warming (actual temperature minus “no greenhouse” temperature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.387</td>
<td>12%</td>
<td>163°C</td>
<td>425°C (day), −175°C (night)</td>
<td>—</td>
</tr>
<tr>
<td>Venus</td>
<td>0.723</td>
<td>75%</td>
<td>−40°C</td>
<td>470°C</td>
<td>510°C</td>
</tr>
<tr>
<td>Earth</td>
<td>1.00</td>
<td>29%</td>
<td>−16°C</td>
<td>15°C</td>
<td>31°C</td>
</tr>
<tr>
<td>Moon</td>
<td>1.00</td>
<td>12%</td>
<td>−2°C</td>
<td>125°C (day), −175°C (night)</td>
<td>—</td>
</tr>
<tr>
<td>Mars</td>
<td>1.524</td>
<td>16%</td>
<td>−56°C</td>
<td>−50°C</td>
<td>6°C</td>
</tr>
</tbody>
</table>

- Only two things matter for “No Greenhouse” temps:
 - The planet’s **distance** from the Sun
 - The planet’s overall **reflectivity**
Why the sky is blue?

- Atmosphere scatters **blue** light from Sun, making it appear to come from different directions.

- Sunsets are **red** because nearly all the blue light has been scattered away.
Effects of Atmosphere

Visible Sunlight IN

Transmission
Absorption
Scattering
Reflection from clouds

Transmission
Absorption
Scattering

IR Thermal Emission OUT
Gaining vs Losing

• Atmospheric Sources and Losses
 - How do planets gain and lose gases?
• How did these sources and losses explain what happened to Mars and Venus?
Atmospheric Sources

• Outgassing - mainly H_2O and CO_2
 - (some N_2 and Sulfer gases)
• Evaporation / Sublimation
• Surface Ejection

Impacts of particles and photons
Volcanic Outgassing - main source of larger terrestrial planet atmospheres

…but not the whole story!
What would Earth be now if there had never been volcanoes?

A. It would not have the same type of life
B. It would not have much of an atmosphere
C. It would be colder than it is now
D. It would be warmer than it is now
E. A + B + C
What would Earth be now if there had never been volcanoes?

A. It would not have the same type of life
B. It would not have much of an atmosphere
C. It would be colder than it is now
D. It would be warmer than it is now
E. A + B + C
Atmospheric Losses

- Thermal escape occurs when atoms or molecules achieve escape velocity.
- Condensation returns gas to the surface as rain, snow, or frost.
- Chemical reactions can incorporate gas into surface materials.
- The solar wind can sweep particles into space.
- Large impacts can blast atmospheric gas into space.
Clicker Question

Under what circumstances is thermal escape likely to be most active?

A. Light gases on big planets far from the Sun
B. Heavy gases on big planets far from the Sun
C. Light gases on small planets near the Sun
D. Light gases on small planets far from the Sun
E. Equally well on any kind of gas from any kind of planet
Under what circumstances is thermal escape likely to be most active?

A. Light gases on big planets far from the Sun
B. Heavy gases on big planets far from the Sun
C. Light gases on small planets near the Sun
D. Light gases on small planets far from the Sun
E. Equally well on any kind of gas from any kind of planet
Now that we’ve got the background...

• Let’s find out how these sources and losses explain what happened to Mars and Venus.
• And why didn’t Earth end up like one of them?
Mars

- 0.6% of Earth’s atmospheric pressure
- Primarily CO$_2$
- Temperature -20 to -50°C

Polar ice cap is water ice and frozen CO$_2$ (dry ice)

Phoenix lander recently found water ice close to the surface

Sunset image showing a little sunlight scattering
Early days of the Red Planet

First 1-2 billion years:

• **warm interior**
 - Results in tectonics, volcanoes, & outgassing
 ⇒ Greenhouse effect
 ⇒ Warming the planet enough for liquid water
 ⇒ Oceans
 ⇒ Weather/Erosion
 ⇒ Life???

• **But then Mars cools down...**
 - Why?
 - What happens?
A chain of events..... :

• Cold (solid) interior \Rightarrow loss of magnetic field
 - solar wind stripping steals atmosphere
• Cold interior \Rightarrow loss of volcanism
 - No gas replenishment
• No atmosphere \Rightarrow no protection from Solar UV/X-rays
 - H_2O broken apart (H escapes, O makes rust)
• Less greenhouse effect \Rightarrow condensation
 - Gas freezes out
 • Increasing reflectivity

Can no longer support liquid water on surface.
What could happen if Mars (today) was moved to Earth's orbital distance?

A. Greenhouse effect would develop, leading to a pleasant (Earth-like) climate
B. Runaway greenhouse would develop, Mars would be too hot to live on.
C. Polar caps would melt into oceans, leading to a stable climate
D. Some increase in its surface temperature, but still too cold for life
E. No change at all
Clicker Question

What could happen if Mars (today) was moved to Earth's orbital distance?

A. Greenhouse effect would develop, leading to a pleasant (Earth-like) climate
B. Runaway greenhouse would develop, Mars would be too hot to live on.
C. Polar caps would melt into oceans, leading to a stable climate
D. Some increase in its surface temperature, but still too cold for life
E. No change at all
Venus

- Pressure ~90 times Earth's
- Primarily CO$_2$
- Temperature 470 C (880F)
• Thick CO$_2$ atmosphere
• EXTREME greenhouse effect
Venus: Sister Planet or Evil Twin?

- **Large as Earth**
 - Ongoing volcanism & outgassing
 - plenty of greenhouse gases
 - High gravity to hold on to atmosphere

 This led to a greenhouse effect (GHE)
 - Which led to high surface temps
 - Also helped by *closeness to Sun*

- **High temps** \Rightarrow steam instead of water \Rightarrow more GHE \Rightarrow higher temps \Rightarrow more steam \Rightarrow
 \Rightarrow **RUNAWAY greenhouse effect!!!**
 (Positive Feedback)
What is the main reason Earth's atmosphere contains only small amounts of CO₂?

A. Earth's volcanoes did not outgas as much carbon dioxide as those on Venus and Mars
B. Plant life converted most of the CO₂ to oxygen
C. Chemical reactions with other gases destroyed the CO₂ and replaced it with the nitrogen
D. CO₂ dissolves in water and most of it is now contained in the oceans and carbonate rocks
E. Earth's distance from the Sun allowed for the CO₂ to escape
What is the main reason Earth's atmosphere contains only small amounts of CO$_2$?

A. Earth's volcanoes did not outgas as much carbon dioxide as those on Venus and Mars
B. Plant life converted most of the CO$_2$ to oxygen
C. Chemical reactions with other gases destroyed the CO$_2$ and replaced it with the nitrogen
D. CO$_2$ dissolves in water and most of it is now contained in the oceans and carbonate rocks
E. Earth's distance from the Sun allowed for the CO2 to escape
What if….

If Earth moved to Venus’s orbit

More intense sunlight…

…would raise surface temperature by about 30°C.

Higher temperature increases evaporation, and warmer air holds more water vapor.

Runaway greenhouse effect

Additional water vapor further strengthens the greenhouse effect.

Result: Oceans evaporate and carbonate rocks decompose, releasing CO₂…

…making Earth hotter than Venus.