Substellar Evolution

PHY 688, Lecture 15
Outline

• Review of previous lecture
 – fusion in brown dwarf interiors
 – towards an analytical solution to the EOS

• Substellar Evolution
 – analytical solution for $L(t)$ and $T_{\text{eff}}(t)$
Previously in PHY 688...
Cooling and Nuclear Burning

- substellar contraction stops
 - by ignition of thermonuclear fuel
 - by onset of degeneracy
- thermonuclear rates depend on both T and ρ
 - T_{ignition} is a function of ρ
 - in lowest mass star, T_c decreases at final stages before stabilizing because of increase in P
- thermonuclear burning in brown dwarfs
 - H for billions of years at $>0.070\, M_{\odot}$ (unsustained)
 - D (^2H), Li for 10–100 Myr (i.e., also unsustained)

(Burrows et al. 2001)
Energy Generation in Low-Mass Stars and Brown Dwarfs

• *From Lecture 4:*

![Diagram of proton-proton (pp) chain in Sun]

$Q = 1.44 \text{ MeV} \quad Q = 5.49 \text{ MeV}$

reaction stops here for $<0.25 \, M_{\text{Sun}}$ stars
Energy Generation is *Enhanced* in Low-Mass Stars and Brown Dwarfs

- unscreened energy generation rates for $^1\text{H} + ^1\text{H} (p + p)$ and $^1\text{H} + ^2\text{H} (p + d)$:
 \[
 \dot{\varepsilon}_{pp} = 2.5 \times 10^6 \left(\rho X^2 / T_6^{2/3} \right) e^{-33.8/T_6^{1/3}} \text{ ergs gm}^{-1}\text{cm}^{-1}
 \]
 \[
 \dot{\varepsilon}_{pd} = 1.4 \times 10^{24} \left(\rho X Y_d / T_6^{2/3} \right) e^{-37.2/T_6^{1/3}} \text{ ergs gm}^{-1}\text{cm}^{-1}
 \]
 Y_d is ^2H mass fraction (primordial value is 2×10^{-5})

- but recall that H is in a state of strongly coupled plasma \(\Gamma = Z^2 e^2 / r_s kT > 1 \)
 - proton and deuteron screening decreases Coulomb barrier
 - \(p + p \) and \(p + d \) rates enhanced by factor of
 \[
 S \approx e^{H(0)}, \quad \text{where } H(0) \approx \min(0.977 \Gamma^{1.29}, 1.06 \Gamma)
 \]
 - at main sequence edge \(S \sim 2 \); can be higher at lower masses
 \[
 \dot{\varepsilon}_{pp} \propto T^{6.31} \rho^{1.28} \text{ in core of transition mass object}
 \]
 \[
 \dot{\varepsilon}_{pp} \propto T^4 \rho \text{ in core of the Sun}
 \]
Analytic Model of Brown Dwarfs

• Brown dwarfs
 – are fully convective, hence isentropic
 – have an EOS that is polytropic both above and below the plasma phase transition
 – can be solved analytically

• Goal: solve for evolution of substellar L and T_{eff}, mass burning limits
 – and learn something along the way!
Hydrogen phase diagram

Adiabats are tracks of $\eta \sim \text{const}$

(Burrows & Liebert 1993)
Cooling and Nuclear Burning

- substellar contraction stops
 - by ignition of thermonuclear fuel
 - by onset of degeneracy
- thermonuclear rates depend on both T and ρ
 - T_{ignition} is a function of ρ
 - in lowest mass star, T_c decreases at final stages before stabilizing because of increase in P
- thermonuclear burning in brown dwarfs
 - H for billions of years at $>0.070 \, M_{\text{Sun}}$ (unsustained)
 - D (2H), Li for 10–100 Myr (i.e., also unsustained)

Feb 27, 2009
From Lecture 1: BDs—a Theoretical Expectation

- Kumar (1963)
 - modeling of $<0.1M_{\text{Sun}}$ stars
 - importance of electron degeneracy

- minimum mass below which objects can not fuse H
Outline

• Review of previous lecture
 – fusion in brown dwarf interiors
 – towards an analytical solution to the EOS

• Substellar Evolution
 – analytical solution for $L(t)$ and $T_{\text{eff}}(t)$
Hydrogen phase diagram

Evolution is towards:
- lower entropy S
- higher degeneracy η

(Burrows & Liebert 1993)
0.05 M_\odot
Brown dwarf at 5 Gyr

($X = 100\% \text{ H}$)

(1 bar = $10^6 \text{ dyn/cm}^2 = 0.99 \text{ atm}$)

$P \approx 5 \text{ bar, } T \approx 1000 \text{ K, } \rho \approx 10^{-4} \text{ g/cc}$

$P \approx 10^{11} \text{ bar, } T \approx 10^6 \text{ K, } \rho \approx 500 \text{ g/cc}$

(Phase change?)
Evolution of Effective Temperature

(Burrows et al. 2001)
Evolution of Luminosity

(Burrows et al. 2001)