Statistics, Error Analysis
Hypothesis Testing

PHY517 / AST443, Lecture 5
Remote Login Issues

- Need an Xserver to display graphics remotely
- Instructions on how to install one for Windows, Mac OS are now available on course website
- Ask for a no-penalty extension if this slowed you down
Outline

• Statistics
 – statistical distributions
 – expectations, error analysis
 – signal-to-noise estimation

• Hypothesis testing
 – parametric tests: t test, F test,
 – non-parametric tests: χ^2 test, K-S test
Basic Concepts

- Binomial, Poisson, Gaussian distributions
Basic Concepts

- Binomial, Poisson, Gaussian distributions
Basic Concepts

- Binomial, Poisson, Gaussian distributions
Basic Concepts

• Binomial, Poisson, Gaussian distributions

• probability density function (p.d.f.)
 – density of probability at each point
 – probability of a random variable falling within a given interval is the integral over the interval
Basic Concepts

• Central Limit Theorem:
 “Let $X_1, X_2, X_3, \ldots, X_n$ be a sequence of n independent and identically distributed random variables each having finite expectation $\mu > 0$ and variance $\sigma^2 > 0$. As n increases, the distribution of the sample average approaches the normal distribution with a mean μ and variance σ^2 / n irrespective of the shape of the original distribution.”
Demonstration of Central Limit Theorem

A bizarre p.d.f. \(p(x) \) with \(\mu = 0, \sigma^2 = 1 \)

p.d.f. of sum of 2 random variables sampled from \(p(x) \)
(i.e., autoconvolution of \(p(x) \))

p.d.f. of sum of 3 random variables sampled from \(p(x) \)

p.d.f. of sum of 4 random variables sampled from \(p(x) \)

source: wikipedia
Confidence Intervals

\[1 - \alpha = 0.95 \]
\[\alpha = 0.05 \]

\[z_{CRIT} = 1.65 \]

\[1 - \alpha = 0.99 \]
\[\alpha = 0.01 \]

\[z_{CRIT} = 2.33 \]
Types of Error in Hypothesis Testing
Student’s t Distribution

$k = \text{d.o.f.}$

source: wikipedia
F Distribution

\[\text{d1, d2 = d.o.f.} \]
χ^2 Distribution

(Wall & Jenkins 2008; Fig 5.4)