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Implicit Integration – Henyey Method

In realistic stellar evolution codes, instead of a direct integration using,
for example, the Runge-Kutta method, one employs an iterative implicit
technique. This is because the structure equations have to be solved in
parallel with the energy transport equations. If timesteps are chosen to be
small enough, convergence is very rapid. It is convenient to reformulate the
original structure equations as

d ln r

dm
=

1

4πρr3
;

d lnP

dm
= −

Gm

4πPr4
.

In order to reduce the dynamic range of the variables, we definee x = ln r,
y = lnP and q = ln ρ and input an equation of state ρ(P ) or equivalently
q(y). We rewrite these differential equations as finite-difference equations
to be zeroed at each position i:

φi = yi − yi−1 +
G

8π

(

m2
i −m2

i−1

)

e−
1
2(yi+yi−1)−2(xi+xi−1),

ψi = xi − xi−1 −
1

4π
(mi −mi−1) e−

3
2(xi+xi−1)−

1
2(qi+qi−1).

These equations are valid for 2 ≤ i ≤ N − 1, where i is the zone number
and N is the number of (radial) zones into which we divide the star. Thus,
mi, yi, xi are the values of the respective variables at the outer edge of the
ith zone. Note that the values of mi are set in advance for the star and
will not change during the iteration. Also note how the finite differencing
is done so as to reduce errors:

mdm =
1

2
dm2

→
1

2

(

m2
i −m2

i−1

)

,
1

P
= e− lnP

→ e−
1
2(yi+yi−1).

At the inner and outer boundaries, these equations must be rewritten
since at i = 0, x→ −∞, and at i = N , y → −∞. The inner boundary can
be approximated using the incompressible fluid result

P (r) ' Pc −
G

2

(

4π

3
ρ4
cm (r)2

)1/3

; r '

(

3m (r)

4πρc

)1/3

,
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which are valid near the origin. Thus, using the subscript 0 for the origin,

φ1 = y1 − y0 +
G

2

(

4π

3

)1/3

M
2/3
1 e4q0/3−y0 ;

ψ1 = x1 −
1

3

(

ln

[

3M1

4π

]

− q0

)

.

The surface can be approximated in several ways. For example, the
polytropic index might be nearly constant there, with a value γR, and the
mass in the outermost zone is negligible compared to the total mass M .
(In fact, we will assume γR = 4/3.) Then it is easy to show that two
independent equations for the behavior of P and r near the surface are

P =
GM (M −m (r))

4πr4
,

P

ρ
= GM

(

1 − γ−1
R

)

(

1

r
−

1

R

)

.

These lead to

φN = yN−1 + 2 (xN + xN−1) − ln
GmN (mN −mN−1)

4π
;

ψN = eyN−1−qN−1 −GmN

(

1 −
dq

dy

∣

∣

∣

q→0

)

(

e−xN−1 − e−xN
)

.

Note that dq
dy

∣

∣

∣

q→0
= γR. Thus, in total, there are N values of xi and yi to

solve for, and we have N equations each for φ and ψ to do it with.
Since we want to solve φi(xi, xi−1, yi, yi−1) = 0 and ψi(xi, xi−1, yi, yi−1) =

0, we expand them in Taylor series:

φi + ai∆xi−1 + bi∆yi−1 + ci∆xi + di∆yi = 0 ;

ψi + a′i∆xi−1 + b′i∆yi−1 + c′i∆xi + d′i∆yi = 0 ,

where the notation ∆xi and ∆yi refers to the changes in the values of xi
and yi that will zero the φ and ψ equations. That is, we need to solve the
above equations for these ∆’s in order to determine how much the x’s and
y’s should be changed for each iteration. The quantities a, b, c and d are
the derivatives

ai =
∂φi
∂xi−1

, bi =
∂φi
∂yi−1

, ci =
∂φi
∂xi

, di =
∂φi
∂yi

,

a′i =
∂ψi
∂xi−1

, b′i =
∂ψi
∂yi−1

, c′i =
∂ψi
∂xi

, d′i =
∂ψi
∂yi

.
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These are functions of the x’s and y’s. These equations are linear in the
∆’s, so we can assume

∆xi = −γi − αi∆yi ; ∆xi−1 = −γi−1 − αi−1∆yi−1 .

By substitution and elimination into the equations for φ and ψ, we find

γi =

(

b′i − a′iαi−1
)

(φi − aiγi−1) − (bi − aiαi−1)
(

ψi − a′iγi−1
)

ci
(

b′i − a′iαi−1
)

− c′i (bi − aiαi−1)
;

αi =
di
(

b′i − a′iαi−1
)

− d′i (bi − aiαi−1)

ci
(

b′i − a′iαi−1
)

− c′i (bi − aiαi−1)
.

We also can find

∆yi−1 = −

(

ψi − a′iγi−1 + c′i∆xi + d′i∆yi
)

b′i − a′iαi−1
.

Now we are in a position to determine new guesses from the original
ones. Note that r0 = 0 implies ∆x0 = 0 since the radius at the origin is
always zero. Thus we must have γ0 = α0 = 0. We can loop through the
above equations for γ and α to now find αi and γi from their values for
i − 1. From the fact that the pressure vanishes on the outer boundary,
∆yN = 0 which also implies ∆xN = −γN . We can find ∆yN−1 in terms of
∆xN ,∆yN and the coefficients a′N−1, b

′
N−1, c

′
N−1, d

′
N−1, and then employ

∆xN−1 = −γN−1−αN−1∆yN−1. In this way, one can loop back to find the
remaining ∆y’s and ∆x’s. Note that this is a form of Gaussian elimination.

When the changes ∆xi and ∆yi become small enough, we have conver-
gence. It is important to note that this is a Newton-Raphson technique,
and therefore its success depends upon suitable initial guesses. I have found
that an initial guess based upon the analytic solution for an incompressible
gas works adequately. For the incompressible gas, we have

m (r) =
4πρcr

3

3
; P (r) = Pc −

2π

3
Gρ2r2 .

These can be expressed also as

r (m) =

(

3m

4πρc

)1/3

; P (m) = Pc −G
2π

3

(

3mρ2
c

4π

)2/3

.

The values of Pc and ρc in this approximation are found from

Pc/ρ
4/3
c = (2πG/3) (.75M/π)2/3 ,

which follows from P (m = M) = 0, combined with the equation of state
Pc(ρc).
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Henyey for Relativistic Stars

To include the effects of General Relativity, one must distinguish between
the gravitational mass m(r) and the baryon mass b(r), where b(r) is the
number of baryons within a radius r times the baryon mass (mB). Because
in GR the gravitational mass is dependent upon the local gravitational field,
but the baryon number is an invariant quantity, we must use b(r) as the
independent variable instead of m(r). The relevant equations become

d ln r

db
=

√

1 − 2Gm/rc2

4πnmBr
3

d lnP

db
= −

G
(

m+ 4πr3P/c2
) (

ρ+ P/c2
)

4πr4nmBP
√

1 − 2Gm/rc2

dm

db
=

ρ

nmB

√

1 − 2Gm/rc2.

(1)

Here, the total mass density is ρ = n(mB + e/c2) where n is the
baryon density and e is the internal energy per baryon. Employing y =
ln(P/c2), x = ln r and q = ln ρ, with, in addition, z = ln(nmB), we find

φi =yi − yi−1 +
G

4πc2
bi − bi−1

Λ

[

1 + e
1
2(qi+qi−1−yi−yi−1)

]

(

mi +mi−1

2
+ 4πe

3
2(xi+xi−1)+

1
2(yi+yi−1)

)

e−
1
2(zi+zi−1)−2(xi+xi−1)

ψi =xi − xi−1 −
1

4π
(bi − bi−1) e

−
3
2(xi+xi−1)−

1
2(zi+zi−1)Λ,

χi =mi −mi−1 − (bi − bi−1) e
1
2(qi+qi−1−zi−zi−1)Λ,

(2)
where

Λ =

√

1 −
G

c2
(mi +mi−1) e

−
1
2(xi+xi−1).

At the inner and outer boundaries, the first two equations must be re-
placed by equations similar to before, but the third equation is well-behaved
at these boundaries and does not have to be replaced. Thus, at the inner
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boundary,

φ1 =y1 − y0 +
G

c2

(

πm2
1

6

)1/3

e
4
3q0−y0

(

1 + ey0−q0
) (

1 + 3ey0−q0
)

,

ψ1 =x1 −
1

3

[

ln

(

3m1

4π

)

− q0

]

,

χ1 =m1 − b1e
1
2(q1+q0−z1−z0)

√

√

√

√

1 −
2G

c2

(

πm2
1

3

)1/3

eq0/3,

(3)

and, at the outer boundary,

φN =yN−1 + 2 (xN + xN−1) − ln

[

G (mN +mN−1) (bN − bN−1)

8π
√

1 − 2GmNe
−xN /c2

]

,

ψN =eyN−1−zN−1 +
1

2

(

1 −
dz

dy

∣

∣

∣

y→0

)

ln

[

1 − 2GmNe
−xN−1/c2

1 − 2GmNe
−xN/c2

]

,

χN =mN −mN−1 − (bN − bN−1)
√

1 − 2GmNe
−xN/c2.

(4)

To implement the boundary conditions, it is convenient to use the linear
relation

∆yi = −γi − αi∆xi − βi∆mi, (5)

and the corresponding expression for i−1. At the inner boundary, we must
have ∆x0 = ∆m0 = 0, so ∆y0 = −γ0. Similarly, at the outer boundary,
the condition ∆yN = 0 implies that γN = αN = βN = 0. Therefore, we
seek relations for γi−1, αi−1 and βi−1 in terms of γi, αi and βi. In addition,
we need expressions for ∆yi, ∆xi and ∆mi in terms of ∆yi−1,∆xi−1 and
∆mi−1. Therefore the recursions will proceed oppositely to the scheme we
employed for the Newtonian calculations.

We expand the functions φi, ψi, χi in Taylor series in the variables yi−1, yi,
xi−1, xi, mi−1,mi, which will define the coefficients ai, a

′
i, a

′′
i and so forth

for b, c, d, e and f :

φi + ai∆yi−1 + bi∆xi−1 + ci∆mi−1 + di∆yi + ei∆xi + fi∆mi = 0,

ψi + a′i∆yi−1 + b′i∆xi−1 + c′i∆mi−1 + d′i∆yi + e′i∆xi + f ′i∆mi = 0,

χi + a′′i∆yi−1 + b′′i∆xi−1 + c′′i∆mi−1 + d′′i∆yi + e′′i∆xi + f ′′i ∆mi = 0.
(6)
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We assume the linear relation Eq. (5) exists among the ∆’s. One finds the
relations

γi−1 =
B′Ψ −BΦ +B′′X + γi

[

b′′iA
′′ + biA− b′iA

′
]

B′D′ −BD +B′′D′′
,

αi−1 =
B′E′ −BE +B′′E′′

B′D′ −BD +B′′D′′
,

βi−1 =
B′F ′ −BF +B′′F ′′

B′D′ −BD +B′′D′′
,

∆xi =
γi (A− Φ) − ∆yi−1D − ∆xi−1E − ∆mi−1F

C ′′B′ − C ′B′′
,

∆mi =
ψiB − φiB

′ + γi
(

aib
′
i − a′ibi

)

− ∆yi−1G− ∆xi−1G
′ − ∆mi−1G

′′

ciB′ − c′iB + βi
(

a′ibi − aib
′
i

) ,

(7)
where

Φ =ψiC
′′
− χiC

′, Ψ = φiC
′′
− χiC, X = ψiC − φiC

′,

A =a′iC
′′
− a′′iC

′, A′ = aiC
′′
− Ca′′i , A′′ = aiC

′
− a′iC,

B =bi − αiai, B′ = b′i − αia
′
i, B′′ = b′′i − αia

′′
i ,

C =ci − βiai, C ′ = c′i − βia
′
i, C ′′ = c′′i − βia

′′
i ,

D =d′iC
′′
− d′′iC

′, D′ = diC
′′
− d′′iC, D′′ = diC

′
− d′iC,

E =e′iC
′′
− e′′iC

′, E′ = eiC
′′
− e′′iC, E′′ = eiC

′
− e′iC,

F =f ′iC
′′
− f ′′i C

′, F ′ = fiC
′′
− f ′′i C, F ′′ = fiC

′
− f ′iC.

G =diB
′
− d′iB, G′ = eiB

′
− e′iB, G′′ = fiB

′
− f ′iB.

(8)

These are supplemented by Eq. (5).


