• Most stars are Main Sequence stars, which burn H into He in their cores.
• Other groups are red giants, which have exhausted H fuel and “burn” He into C and O, supergiants which are burning even heavier elements, and white dwarfs (dead low-mass stars).
• Main Sequence stars can be divided into spectral types O, B, A, F, G, K and M based on surface temperature or color
• Note that there are straight lines of constant radius contours
Spectral Types

<table>
<thead>
<tr>
<th>Spectral Type</th>
<th>Initial Mass (M⊙)</th>
<th>M-S Luminosity (L⊙)</th>
<th>M-S Surface Temperature (°K)</th>
<th>M-S Lifetime (years)</th>
<th>M-S Radius (R⊙)</th>
<th>Number in Galaxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>60</td>
<td>800,000</td>
<td>50,000</td>
<td>1 \cdot 10^6</td>
<td>12</td>
<td>5.5 \cdot 10^4</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>800</td>
<td>15,000</td>
<td>1 \cdot 10^8</td>
<td>3.9</td>
<td>3.6 \cdot 10^8</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>14</td>
<td>8000</td>
<td>2 \cdot 10^9</td>
<td>1.7</td>
<td>2.4 \cdot 10^9</td>
</tr>
<tr>
<td>F</td>
<td>1.3</td>
<td>3.2</td>
<td>6500</td>
<td>6 \cdot 10^9</td>
<td>1.3</td>
<td>1.2 \cdot 10^{10}</td>
</tr>
<tr>
<td>G</td>
<td>0.9</td>
<td>0.8</td>
<td>5500</td>
<td>1.3 \cdot 10^{10}</td>
<td>0.92</td>
<td>2.8 \cdot 10^{10}</td>
</tr>
<tr>
<td>K</td>
<td>0.7</td>
<td>0.2</td>
<td>4000</td>
<td>4 \cdot 10^{10}</td>
<td>0.72</td>
<td>6 \cdot 10^{10}</td>
</tr>
<tr>
<td>M</td>
<td>0.2</td>
<td>0.01</td>
<td>3000</td>
<td>2.5 \cdot 10^{11}</td>
<td>0.3</td>
<td>3 \cdot 10^{11}</td>
</tr>
</tbody>
</table>

- A star's physical properties on the Main Sequence (M-S) are related:
 \[T_{int} \propto M/R; \quad R \propto M^{1/2} \]

- These, taken with the relations \(L \propto R^2 T^4 \) and \(T_{int} \propto T \), imply
 \[L \propto M^3 \]

- The volume of a star’s habitable zone is approximately proportional to \(M^4 \sim L^{4/3} \).

- A star’s Main Sequence lifetime can be estimated by considering the amount of fuel and dividing by the rate at which the fuel is burned:
 \[\tau \propto \frac{M}{L} \propto \frac{M}{M^3} = \frac{1}{M^2}; \quad \tau = \tau_\odot \frac{M}{L} \]

- So, massive stars burn out too quickly for life to ever form on planets orbiting them.
Stellar Habitable Zones
Advanced Evolution of (Low-Mass) Stars

- Low-mass stars ($M < 8M_\odot$) evolve into a red giant phase in which their surfaces expand enormously and also cool, but their interiors shrink and heat. This occurs when the H fuel in the star’s core is depleted. A red giant burns He into C and O. When the He fuel is eventually exhausted, the outer stellar portions expand away (planetary nebula) and core cools and dies as a white dwarf.
White Dwarfs

• Normal stars are composed of gas supported by thermal pressure, where $P \propto \rho T$.

• Ordinary solid matter at room temperature, like rock, has essentially zero pressure.

• As the temperature is lowered, gas pressure tends to zero. So when a star dies and subsequently cools off, little pressure exists to support it against gravity even if it crystallizes (freezes).

• However, quantum mechanics predicts, because of the Pauli Exclusion Principle, that it is difficult to squeeze electrons or nucleons into too small a volume. This additional source of pressure, which exists even at zero temperature, is called degeneracy pressure.

• A star as it cools off eventually replaces thermal pressure with degeneracy pressure and becomes a white dwarf.

• Degeneracy pressure is large, but not infinite. Chandrasekhar showed that an upper limit to the white dwarf mass is about $1.4 \, M_\odot$ (called the Chandrasekhar limit). This is the limit obtained from electron degeneracy pressure.

• Typical white dwarfs have masses within $0.1 – 1.2 \, M_\odot$, and radii $3 \, R_\oplus \approx 0.01 \, R_\odot$.

• The density in a white dwarf is about $10^6 \, g \, cm^{-3}$, a million times that of water (a teaspoon of a white dwarf would weigh as much as an elephant on the Earth).
Evolution in the H-R Diagram
Proof of Evolution

M55

Cluster Main Sequence

WD \rightarrow Blue Stragglers

Horizontal Branch

Red Giant Branch

Asymptotic Giant Branch

Blue Dwarf Stars

White Dwarf Stars

Population Red Dwarf Stars

Stars Evolving to Red Giant Stage

Background Stars

Intrinsic Brightness M_U

Blue Hotter

Color/Temperature $(U-I)_0$

Redder Cooler

M4

Lattimer, AST 301, Lecture 3 – p.7/15
Advanced Evolution of (High-Mass) Stars

• High-mass stars \((M > 8M_\odot)\) evolve into both red and blue giants and supergiants as their cores burn heavier and heavier elements.

• After the core is converted into iron, the most bound element, nuclear burning ceases to produce energy and the star collapses to form a neutron star or black hole, a violent event accompanied by a supernova explosion (of Type II).

• Supernovae within a few thousand lt.-yrs. would be lethal to Earth life.

• Yet life could not exist without supernovae, because supernovae eject nearly all heavy elements into space. Until supernovae occurred, gas from which stars and planets were made contained virtually no elements heavier than helium.
Advanced Evolution of (Binary) Stars

• Stars in binaries may evolve significantly different than single stars

• Stars in close binaries may transfer mass to their companions, for example, when they become red giants or supergiants

• White dwarfs in close binaries may accrete matter transferred from a normal stellar companion. Because white dwarfs have an upper mass limit (the Chandrasekhar mass $\sim 1.4 \, M_\odot$) they may begin to collapse. However, white dwarfs consist of nuclear fuel (e.g., C, O) and will instead explode like a super thermonuclear bomb and will be incinerated into iron in a violent Type I supernova event.
Nuclear Nomenclature

- An atom is composed of a nucleus and 1 or more electrons.
- The nucleus has 1/100,000 the radius of the atom, but nearly all its mass.
- Nuclei are composed of positively charged protons and neutral neutrons.
- Elements are distinguished by the atomic number Z (number of protons).
- Z (element symbol)A refers to a nucleus or an atom of atomic number Z and atomic weight $A = Z + N$.
- An isotope is a nucleus with the same Z as another nucleus but with a different neutron number N. Chemically, isotopes are nearly identical.
- A nucleus that is not permanently stable is radioactive and eventually decays into another. Although the decay of a particular radioactive nucleus is random, 50% of a collection of radioactive nuclei decays in one half-life.
Nuclear Energy Generation

• In general, fusion in stars goes from the lightest elements to heavier ones, because Coulomb repulsion is proportional to \(Z_1 Z_2 \).

• Fusion of hydrogen nuclei to helium nuclei (proton-proton cycle)

\[
\begin{align*}
1\text{H}^1 + 1\text{H}^1 & \rightarrow 1\text{H}^2 + e^+ + \nu_e; \\
1\text{H}^2 + 1\text{H}^1 & \rightarrow 2\text{He}^3 + \gamma; \\
2\text{He}^3 + 2\text{He}^3 & \rightarrow 2\text{He}^4 + 1\text{H}^1 + 1\text{H}^1.
\end{align*}
\]

\(\nu_e \) is the neutrino, a massless nearly invisible particle.

• R. Davis (Brookhaven Nat’l Lab) first detected neutrinos from the Sun using a tank of 100,000 gallons of carbon tetrachloride (\(\text{C}_2\text{Cl}_4 \), cleaning fluid) in the Homestake Gold Mine in Lead, South Dakota in the 1970’s. The observation of neutrinos from the Sun proves that energy is generated by the fusion of H into He: every time a proton is converted into a neutron, a neutrino is produced.

• In the red giant phase, helium is converted into heavier elements by

\[
3(2\text{He}^4) \rightarrow 6\text{C}^{12} \\
6\text{C}^{12} + 2\text{He}^4 \rightarrow 8\text{O}^{16}
\]

• There are no stable elements of mass 5 or 8. This is why the Big Bang doesn’t produce many nuclei heavier than helium, and why a rare three-body collision is needed to synthesize heavy elements in stars.
In massive stars, nuclear burning of heavier elements continues: C, O → Ne → Mg, Si → S, Ca → Fe, Ni

Beyond C, O burning, more energy is wasted in producing neutrinos than in delivering heat to support the star against gravity and in generating its emitted light. The neutrinos escape rather than give up their energy inside the star.

The interaction of neutrinos with matter is so weak that to have a 50% chance of stopping a solar neutrino, a lead shield would have to be 100 lt.-yrs. thick.

The production of neutrinos reaches a crescendo in the gravitational collapse leading to a Type II supernova. The luminosity of neutrinos for a few seconds then rivals the energy output of all the stars in all the galaxies of the visible universe! The energy emitted in neutrinos within a few seconds in a supernova is more than 300 times the total light output of a solar-like star during its entire life!

The production of neutrinos and the nucleosynthesis and ejection of heavy nuclei in Type II supernovae was confirmed by SN 1987a in the Large Magellanic Cloud, a nearby galaxy, on February 23, 1987. Neutrino detectors in Ohio and Japan detected a total of about 20 neutrinos even though this supernova was 180,000 lt.-yrs. from the Earth. Radiactive Ni, Co and Ti nuclei were also observed in the ejecta. To date, no neutron star is visible within the remnant, suggesting that a black hole might have formed instead.
Nucleosynthesis

- After the Big Bang, matter in the universe consisted almost entirely of only H and He.
- Heavy elements are synthesized only in stars.
- Heavy elements are mostly dispersed through supernova explosions, of both Type I and Type II.
- Some C, N, O and Ne are also ejected from stars in stellar winds and in novae (when “combustible” H is accreted, burned, and ejected from the surface of a white dwarf in a close binary).
- Because of Coulomb repulsion, the abundance of elements decreases with Z.
- Elements made of multiples of α—particles (He nuclei) are more abundant than average.
- Elements with even numbers of protons are more abundant than odd Z elements.
- Fe and Ni are the most bound elements, so heavier elements are created only in rare explosive events like supernovae.
Neutron Stars and Black Holes

- If matter is forced to even higher densities than in a white dwarf, 10^6 times that of water, it collapses but could stabilize to form a neutron star with aid of additional pressure from nucleon degeneracy and the strong nuclear force.

- Neutron stars have masses 1.2–1.5 M_\odot and radii 10–15 km, only 3–4 times the radius of the same mass black hole.

- The upper mass limit to a neutron star is not well known, but has to be less than about 3 M_\odot.

- Without the existence of degeneracy pressure, a cold star would eventually collapse into a black hole, first predicted by Michell in 1783, but termed *corps obscura* by Laplace in 1795.

- A black hole occurs when the size of the object becomes small enough that the escape velocity becomes equal to the speed of light c.

\[v_{\text{escape}} = \sqrt{\frac{2GM}{R}}, \Rightarrow R = 2 \frac{G}{c^2} M \approx 3 \frac{M}{M_\odot} \text{ km} \]

- Cold objects of larger mass than the upper limit to the neutron star mass must be black holes. Many black holes are known to exist, with masses ranging from about 10 M_\odot to millions of solar masses.

- Masses of white dwarfs, neutron stars and black holes have been precisely measured in binary systems using Kepler's Laws with general relativistic refinements.