The Sun

Our Star
On 1 September 1859, a small white light flare erupted on the Solar surface

17 hours later

- Magnetometers recorded a large disturbance
- Aurorae were seen in the Carribean,
- Telegraphs went haywire
What we know about the Sun

• **Angular Diameter** $\theta = 32$ arcmin (from observations)
• **Solar Constant** $f = 1.4 \times 10^6$ erg/sec/cm2 (from observations)
• **Distance** $d = 1.5 \times 10^8$ km (1 AU).
 (from Kepler's Third Law and the trigonometric parallax of Venus)
• **Luminosity** $L = 4 \times 10^{33}$ erg/s.
 (from the inverse-square law: $L = 4\pi \ d^2 \ f$)
• **Radius** $R = 7 \times 10^5$ km. (from geometry: $R = \theta \ d$)
• **Mass** $M = 2 \times 10^{33}$ gm. (from Newton's version of Kepler's Third Law, $M = (4\pi^2/G) \ d^3/P^2$)
• **Temperature** $T = 5800$ K. (from the black body law: $L = 4\pi R^2 \sigma \ T^4$)
• **Composition** about 74% Hydrogen, 24% Helium, and 2% everything else (by mass). (from spectroscopy)
The Solar Surface

The photosphere. The visible light disk.

Galileo observed sunspots (earlier noted by Chinese observers)
- Sunspots are regions of intense magnetic fields
- Sunspots appear dark because they are cooler than the photosphere
- A large sunspot is brighter than the full moon.
Solar Granulation

Real time: 20 minutes
Photospheric Magnetic Fields

Zeeman Effect
Sunspots

Pressure balance:
Gas pressure + magnetic pressure in spot
= gas pressure outside spot

\[B_s \sim 2kG \]
\[T_s \sim 4500K \]
Magnetic Flux Loops

- Magnetic energy density: $\frac{B^2}{8\pi}$
The Chromosphere

• First noticed in total solar eclipses.
• Name from the red color (from an emission line of Hydrogen)
• Hot (8000-20,000K) gas heated by magnetic fields.
• Bright regions known as plage.
The Corona
The diffuse outer atmospheres of the Sun.

The X-ray corona

The white-light corona

Also, the K corona - sunlight scattered from interplanetary dust
The Corona
While engaged in the forenoon of Thursday, September 1, in taking my customary observation of the forms and positions of the solar spots, an appearance was witnessed which I believe to be exceedingly rare. ...
I had secured diagrams of all the groups and detached spots, and was engaged at the time in counting from the chronometer and recording the contacts of the spots with the cross-wires used in the observation, when within the area of the great north group (the size of which had previously excited great remark), two patches of intensely bright and white light broke out, in the positions indicated in fig. 1 ...

My first impression was that by some chance a ray of light had penetrated a hole in the screen attached to the object glass, for the brilliancy was fully equal to that of direct sun-light; but by at once interrupting the current observation, and causing the image to move ...

I saw I was an unprepared witness of a very different affair. I therefore noted down the time by the chronometer, and seeing the outburst to be very rapidly on the increase, and being somewhat flurried by the surprise, I hastily ran to call some one to witness the exhibition with me, and on returning within 60 seconds, was mortified to find that it was already much changed and enfeebled. Very shortly afterwards the last trace was gone. In this lapse of 5 minutes, the two patches of light traversed a space of about 35,000 miles.
The 1 Sept 1859 Flare

• 9/1: Carrington observed white-light flare
• 9/2: Brilliant auroras seen
 (as far south as the Caribbean)
• Telegraphs functioned w/o batte
• Telegraph operators shocked

• First solar flare recorded
• Strongest in ~500 years
Flares
SDO X1.4 flare
The Magnetic Carpet
Classification of Solar Flares

<table>
<thead>
<tr>
<th>Class</th>
<th>Intensity (W/m²)</th>
<th>Luminosity (L☉, 100 sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>10^{-7}</td>
<td>10^{-8}</td>
</tr>
<tr>
<td>C</td>
<td>10^{-6}</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>M</td>
<td>10^{-5}</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>X</td>
<td>10^{-4}</td>
<td>10^{-5}</td>
</tr>
</tbody>
</table>
Solar Flare Statistics

dN/dW \propto W^{-1.7}

• Largest flare recorded:
• Peak luminosity \sim 2 \times 10^{29} \text{ erg/s}
• Total energy \sim 3 \times 10^{31} \text{ erg}

Extrapolating from one X14 flare/yr:
• $10^{32} \text{ erg every 50 years}$
• $10^{35} \text{ erg every } 10^6 \text{ years}$
• $10^{38} \text{ erg flare once in } 10^{12} \text{ years}$
Effects of large solar flares

- Most of the radiation is in X- and γ-rays.
- Ionizing radiation is absorbed in Earth’s atmosphere.
- X- and γ-rays can ionize metal in spacecraft and cause electrical shorts.
- X- and γ-rays can kill unprotected astronauts.
- UV radiation can destroy ozone.
How Big Can Solar Flares Get?

- Luminosities $> 10^{33}$ ergs, to 10^{38} ergs
- 10^{36} erg flare destroys 80% of ozone layer
- 10^{38} erg flare melts ice caps

Extrapolated superflare rate ~ 1/millenium
But Wait - There’s More

Solar Flares often generate

Coronal Mass Ejections,

outflows of charged particles.

- $\sim 10^{11}$ kg of material
- $V \sim 10^3$ km/s
Coronal Mass Ejections
Coronal Mass Ejections
Coronal Mass Ejections
Effects of Coronal Mass Ejections

Charged particles disrupt Earth’s magnetic field
• Set up voltage gradient
• Can cause current surges
• Can bring down the power grid
• Can burn out transformers
• Disrupts the ionosphere
• Fries satellites
More Pictures and References

- Solar Data Analysis Center (SDAC): http://umbra.nascom.nasa.gov/ includes links to SOHO, SDO, HINODE, and YOHKOH

Other Solar Missions:

- TRACE: http://trace.lmsal.com/
Coronal Cycle
The Magnetic Cycle

Spot cycle ~11 years
Magnetic cycle ~22 yrs