AST 248, Lecture 3

James Lattimer

Department of Physics & Astronomy
449 ESS Bldg.
Stony Brook University

February 9, 2015

The Search for Intelligent Life in the Universe

james.lattimer@stonybrook.edu
Properties of Light and Radiation

- Speed is $c = 3 \times 10^{10} \text{ cm/s} = 186,000 \text{ mi/s} = 6.7 \cdot 10^8 \text{ mph}$.
- Distance traversed in 1 year is called a light-year.
- Has properties characteristic of both waves and particles.
- Wave nature: Wavelength \times Frequency $= c$ (Speed) $\lambda \times \nu = c$
- Wavelengths from γ-rays ($\lambda \sim 10^{-13} \text{ cm}$) to radio ($\lambda \sim 10^3 \text{ cm}$).
- Visible light is optical radiation, $3 \times 10^{-5} \text{ cm}$ $\lambda < 7 \times 10^{-5} \text{ cm}$.
Why Astronomers Need Space-Based Telescopes

- Gamma Rays
- Ultraviolet
- X Rays
- Far-IR
- Near-IR
- Microwaves
- MM Waves
- Radio Waves

Gamma Rays, X-Rays and Ultraviolet Light blocked by the upper atmosphere (best observed from space).

Visible Light observable from Earth, with some atmospheric distortion.

Most of the Infrared spectrum absorbed by atmospheric gasses (best observed from space).

Radio Waves observable from Earth.

Long-wavelength Radio Waves blocked.

Greenhouse Effect
Photons and Inverse Square Law

- Particle nature: Smallest unit of radiation is a photon.
- Photon energy is proportional to frequency $E = h\nu$

h is Planck's constant, $6.6 \cdot 10^{-27} \text{ cm}^2 \text{ g s}^{-1}$

- Brightness (B) or Intensity (I) is apparent flux from an object while Luminosity (L) the intrinsic or absolute power output.

- Inverse square law of brightness – brightness (intensity) diminishes as distance squared:

$$B = \frac{L}{D^2}$$
Wein’s Law

- Radiation from a luminous object is emitted at virtually all wavelengths, but peak wavelength of distribution is inversely proportional to temperature

\[\lambda = \frac{0.29}{T} \text{ cm} / \text{K} \]

AKA Wien’s Law

- Therefore the color of a star is a measure of its temperature.

hyperphysics.phy-astr.gsu.edu/hbase/wien.html
Luminosity

- Total power (luminosity) emitted by a luminous object (e.g., a star) is dependent upon both temperature T and object size or radius R:
 \[L = 4\pi R^2 \sigma T^4 \]
 \[\sigma = 5.567 \cdot 10^{-5} \text{ erg cm}^{-2} \text{ K}^{-4} \] is radiation constant.

- This is seen by examining the total area under the emitted power density curves.

hyperphysics.phy-astr.gsu.edu/hbase/wien.html
Spectroscopy

- A prism can spread light into a spectrum.
- Spectra have absorption and/or emission lines, each characteristic of an electronic transition in an atom or molecule. Can deduce elemental or chemical composition of stars.

Spectrum of fluorescent light
Dark lines are absorption lines produced by cooler gas above hot solar surface, and each is due to a specific element (atom) or molecule. Most, but not all, spectral lines have been identified. The chemical composition and temperature of the absorbing gas can therefore be determined.
Doppler Effect

- Speed of light is independent of source’s velocity (Einstein’s Special Theory of Relativity)
- The observed wavelength of a photon or a spectral line depends upon the relative velocities of the source and the observer.
- The observed change in the wavelength, the Doppler shift, is proportional to the net relative speed difference between the source and observer: \(\frac{\Delta \lambda}{\lambda} = \frac{v}{c} \)

- If the source is moving towards (away from) you, you observe a blue-(red-)shift.
- Song to explain it all: www.astrocappella.com/doppler.shtml
A spectroscopic binary is where there is evidence of orbital motion in the spectral features due to the Doppler effect.

1. approaching us

2. receding from us

Star B spectrum at time 1: approaching, therefore blueshifted

Star B spectrum at time 2: receding, therefore redshifted
For an interesting demo about the Doppler effect in binary stars, see
instruct1.cit.cornell.edu/courses/astro101/java/binary/binary.htm
The Sun and Other Stars

- $L_\odot = 4 \cdot 10^{33}$ erg/s

- Yellow color means that the peak wavelength of the Sun’s spectrum is $\lambda_{\text{max}} \simeq 5 \cdot 10^{-5}$ cm

- Use Wien’s Law to find the Sun’s surface temperature: $T_\odot = 0.29$ cm/λ_{max} $
\simeq 6000$ K

- Invert the blackbody luminosity formula to derive the solar radius: $R_\odot = \sqrt{\frac{L_\odot}{4\pi\sigma T_\odot^4}} = 7 \cdot 10^{10}$ cm

General Properties of Stars

- Mass: 0.1–100 M_\odot

- Luminosity: 0.0001–106 L_\odot

- Radius: 0.1–1400 R_\odot

- Surface Temperature: 2000–40,000 K

- Some ”stars”, white dwarfs and neutron stars, have more extreme properties.

- Objects between 10 Jupiter masses and 0.02M_\odot begin as stars, then cool off as brown dwarfs.
The main physical properties of stars are their luminosity L, surface temperature T, radius R and mass M. E. Hertzsprung and H. Russel discovered that plotting L vs. T was a useful way to discriminate types of stars.