Large and Small Numbers

Astronomers work with very large and very small numbers.

For example:

- The radius of the sun is 70,000,000,000 centimeters
- The mass of the sun is 20,000,000,000,000,000,000,000,000,000,000,000 grams
- The radius of a Hydrogen atom is 0.000,000,01 centimeters
- The mass of a Hydrogen atom is 0.000,000,000,000,000,000,000,001,6 grams

Such numbers are at best inconvenient to use
Scientific Notation

Scientists use a shorthand called scientific notation

Any number can be expressed as the product of two other numbers.

Usually, one of the numbers is a power of 10.

For example,

- $200 = 2 \times 100$ or $2 \times 10 \times 10$, or 2×10^2.
- $70,000,000,000 = 7 \times 10,000,000,000 = 7 \times 10^{10}$

Here, the 10 is called the *exponent*.

The exponent is the number of zeros which follow the initial number called the mantissa.
Scientific Notation

Numbers with absolute values less than 1:

The exponent is negative, because $10^{-n} = \frac{1}{10^n}$.

To get the exponent, count the number of zeros to the right of the decimal place, add 1, and then take the negative.

For example, $0.002 = 2 \times 0.001 = 2 \times 10^{-3}$.

Numbers between 1 and 10 have exponents of 0 because $10^0 = 1$.
Significant Figures

1.234 \times 10^6 = 12.34 \times 10^5 = 0.1234 \times 10^7

By convention, we use a mantissa with one figure to the left of the decimal place (1.234 \times 10^6 is preferred).

The significant figures are the number of digits in the mantissa.

This number (1.234 \times 10^6) has 4 significant figures.

For most purposes in this course, 2 or 3 significant figures suffice.
Manipulating Numbers

Scientific notation simplifies manipulation of large and small numbers.

Suppose you wanted to determine the moment of inertia of the Sun. This is the product MR^2.

$I = 2 \times 10^{33} \times 7 \times 10^{10} \times 7 \times 10^{10}$

Multiply the mantissas ($2 \times 7 \times 7 = 98$)
Add the exponents ($33 + 10 + 10 = 53$)
$I = 98 \times 10^{53} = 9.8 \times 10^{54}$

For division, subtract the exponents
POWERS OF ONE
A MIND-EXPANDING LOOK AT OUR WORLD
Basic Units of Measurement
Distance

Centimeter (cm): 1,650,763.73 wavelengths in vacuum of the radiation corresponding to the transition between the levels 2p10 and 5d5 of the krypton\(^{86}\) atom.

Meter (m): 100 cm. Originally \(10^{-4}\) of the mean distance from the North Pole to the equator.

Kilometer (km): \(10^3\) m.

Angstrom Å: \(10^{-10}\) m.

Nanometer (nm): \(10^{-9}\) m.

Micron (µm): \(10^{-6}\) m.

Inch: 2.54 cm; Mile: 1.62 km

Longer Distances

Solar radius (R_☉): \(7 \times 10^{10}\) cm

Astronomical Unit (AU): Earth-Sun distance = \(1.5 \times 10^{13}\) cm

Light Year (ly): \(9.46 \times 10^{17}\) cm
Mass

gram (gm): defined by the mass of a platinum-iridium cylinder stored in a vault in Paris.

kilogram (kg): 1000 gm.

Pound (lb): 454 gm

Stone: 14 lb.

Solar mass (M_☉): 2×10^{33} gm.
Time

Second (s): the duration of 9,192,631,770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of cesium\(^{133}\).

Day (d): 86,400 seconds. Mean rotation of the Earth

Year (yr): 365.2422 d. Approx \(\pi \times 10^7\) s. Orbital period of Earth
Temperatures

<table>
<thead>
<tr>
<th>scale</th>
<th>Absolute zero</th>
<th>Water freezes</th>
<th>Water boils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelvin (K)</td>
<td>0</td>
<td>273.15</td>
<td>373.15</td>
</tr>
<tr>
<td>Celsius (C)</td>
<td>-273.15</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Farenheit (F)</td>
<td>-456</td>
<td>32</td>
<td>212</td>
</tr>
</tbody>
</table>

1K = 1°C = \(\frac{9}{5} \) F; \(C=(F-32)\times\frac{5}{9} \)