Physics (PHY)

Major and Minor in Physics

Department of Physics and Astronomy, College of Arts and Sciences

CHAIRPERSON: Paul Graniss  DIRECTOR OF UNDERGRADUATE STUDIES: Emilio Mendez  ASTRONOMY COORDINATOR: James Lattimer

ASSISTANT TO THE DIRECTOR: Elaine Larsen  E-MAIL: Emilio.Mendez@stonybrook.edu


Minors of particular interest to students majoring in Physics: Computer Science (CSE), Electrical Engineering (ESE), Materials Science (ESM), Mathematics (MAT), Optics (OPT), Science and Engineering (LSE)

Faculty

Alexander Abanov, Assistant Professor, Ph.D., University of Chicago: Theoretical condensed matter physics.

Philip B. Allen, Professor, Ph.D., University of California, Berkeley: Theoretical solid-state physics; superconductors and superconductivity.

Ralf Averbeck, Research Assistant Professor, Ph.D., Universitaet Giessen, Germany: Experimental nuclear physics.

Dimitri Averin, Professor, Ph.D., Moscow State University: Solid-state physics.

Thomas Bergeman, Research Professor, Ph.D., Harvard University: Theoretical atomic physics.

Gerald E. Brown, Distinguished Professor, Ph.D., Yale University: Theoretical nuclear physics. Member, Yang Institute for Theoretical Physics.

Abhay Deshpande, Assistant Professor, Ph.D., Yale University: Nucleon spin; heavy ion physics.

Axel Drees, Professor, Ph.D., University of Heidelberg: Experimental nuclear physics; relativistic ions.

Adam Durst, Assistant Professor, Ph.D., Massachusetts Institute of Technology: Theoretical condensed-matter physics.

Roderich Engelmann, Professor, Ph.D., University of Heidelberg: Experimental elementary particle physics.

Aaron Evans, Assistant Professor, Ph.D., University of Hawaii: Observational extragalactic astronomy.

Miriam Forman, Adjunct Professor, Ph.D., Stony Brook University: Cosmic rays.

Marvin Geller, Adjunct Professor, Ph.D., Massachusetts Institute of Technology: Atmospheric dynamics.

Alfred S. Goldhaber, Professor, Ph.D., Princeton University: Theoretical physics; nuclear theory; particle physics. Member, Yang Institute for Theoretical Physics.

Vladimir J. Goldberg, Professor, Ph.D., University of Maryland at College Park: Experimental condensed matter physics.

Maria Concepcion Gonzalez-Garcia, Associate Professor, Ph.D., Universidad de Valencia: Particle physics phenomenology; neutrino physics. Member, Yang Institute for Theoretical Physics.

Erlend H. Graf, Associate Professor, Ph.D., Cornell University: Experimental low-temperature physics.

Paul D. Graniss, Distinguished Professor, Ph.D., University of California, Berkeley: Experimental high-energy physics; elementary particle reactions.

Michael Gurvitch, Professor, Ph.D., Stony Brook University: Experimental solid-state physics.

Thomas Hemmick, Professor, Ph.D., University of Rochester: Experimental relativistic heavy-ion nuclear physics. Recipient of the State University Chancellor's Award for Excellence in Teaching, 1996.

John Hobb, Associate Professor, Ph.D., University of Chicago: Experimental high-energy physics.

Barbara Jacak, Professor, Ph.D., Michigan State University: Experimental nuclear physics; relativistic heavy ions.

Chris Jacobsen, Professor, Ph.D., Stony Brook University: X-ray physics.

Chang Kee Jung, Professor, Ph.D., Indiana University: Experimental high-energy physics.

Peter B. Kahn, Professor Emeritus, Ph.D., Northwestern University: Theoretical physics; nonlinear dynamics.

Janos Kirz, Distinguished Professor, Ph.D., University of California, Berkeley: X-ray optics. Recipient of the State University Chancellor's Award for Excellence in Teaching, 1976.

Peter M. Koch, Professor, Ph.D., Yale University: Experimental atomic physics; quantum chaos; nonlinear dynamics.

Vladimir Korepin, Professor, Ph.D., Leningrad University: Exactly solvable models in quantum field theory. Member, Yang Institute for Theoretical Physics.


Kenneth M. Lanzetta, Professor, Ph.D., University of Pittsburgh: Observational cosmology.

James Lattimer, Professor, Ph.D., University of Texas: Nuclear astrophysics.

Linwood L. Lee, Jr., Professor Emeritus, Ph.D., Yale University: Experimental nuclear structure.

Konstantin Likharev, Distinguished Professor, Ph.D., Moscow State University: Solid-state physics.

James Lukens, Professor, Ph.D., University of California, San Diego: Experimental solid-state physics.

Robert L. McCarthy, Professor, Ph.D., University of California, Berkeley: Experimental elementary particle physics.

Barry M. McCoy, Distinguished Professor, Ph.D., Harvard University: Statistical mechanics. Member, Yang Institute for Theoretical Physics.

Robert L. McGrath, Professor, Provost and Vice President of Brookhaven Affairs; Ph.D., University of Iowa: Experimental physics; nuclear structure.

Clark McGrew, Assistant Professor, Ph.D., University of California at Irvine: Experimental particle physics; neutrino physics.

John H. Marburger, Professor, former President of Stony Brook University and Director, Office of Science and Technology Policy, White House; Ph.D., Stanford University: Laser theory.

Michael Marx, Professor, Ph.D., Massachusetts Institute of Technology: Experimental high-energy and relativistic heavy-ion physics.

Emilio E. Mendez, Professor, Ph.D., Director of the Institute for Interface Phenomena, Massachusetts Institute of Technology: Experimental solid-state physics.


Richard A. Mould, Associate Professor Emeritus, Ph.D., Yale University: Theoretical physics; general relativity; quantum theory of measurements.

Peter Paul, Distinguished Service Professor, Ph.D., University of Freiburg: Experimental nuclear physics.

Stephen G. Peggs, Adjunct Professor, Ph.D., Cornell University: Accelerator physics.

Accurate as of Fall 2005

http://www.stonybrook.edu/ugbulletin 277
Deane M. Peterson, Associate Professor, Ph.D., Harvard University: Observational stellar astronomy.

Norbert Pietralla, Assistant Professor, Ph.D., University of Cologne: Experimental nuclear-structure physics; gamma-ray spectroscopy.

Madappa Prakash, Research Professor, Ph.D., University of Bombay, India: Theoretical nuclear physics.

Michael Rijsenbeek, Professor, Ph.D., University of Amsterdam: Experimental high-energy physics.

Martin Rocek, Professor, Ph.D., Harvard University: Theoretical physics. Member, Yang Institute for Theoretical Physics.

Dominik Schneble, Assistant Professor, Ph.D., University of Konstanz: Experimental atomic physics; ultracold quantum gases.

Vasily Semenov, Research Professor, Ph.D., Moscow State University: Experimental condensed matter physics.

Robert Shrock, Professor, Ph.D., Princeton University: Theoretical physics; gauge theories, statistical mechanics. Member, Yang Institute for Theoretical Physics.

Edward Shuryak, Distinguished Professor, Ph.D., Novosibirsk Institute of Nuclear Physics: Theoretical nuclear physics.

Warren Siegel, Professor, Ph.D., University of California, Berkeley: Theoretical physics; strings. Member, Yang Institute for Theoretical Physics.

Michal Simon, Professor, Ph.D., Cornell University: Observational astronomy.

John Smith, Professor, Ph.D., University of Edinburgh: Elementary-particle physics. Member, Yang Institute for Theoretical Physics.

Philip M. Solomon, Distinguished Professor, Ph.D., University of Wisconsin: Galactic and extragalactic astronomy.

Gene D. Sprouse, Professor, Ph.D., Stanford University: Experimental nuclear structure. Recipient of the State University Chancellor’s Award for Excellence in Teaching, 1999.

Peter W. Stephens, Professor, Ph.D., Massachusetts Institute of Technology: Experimental solid-state physics.

George Sterman, Professor and Director, Yang Institute for Theoretical Physics, Ph.D., University of Maryland at College Park: Theoretical physics; elementary particles. Member, Yang Institute for Theoretical Physics.

Clifford E. Swartz, Professor Emeritus, Ph.D., University of Rochester: School curriculum revision.

F. Douglas Swesty, Research Assistant Professor, Ph.D., Stony Brook University: Computational nuclear astrophysics.

Sergey Tolpygo, Adjunct Professor, Ph.D., Russian Academy of Sciences: Mesoscopic physics.

Peter Van Nieuwenhuizen, Distinguished Professor, Ph.D., Utrecht University: Theoretical Physics. Member, Yang Institute for Theoretical Physics.

Jacobs Verbaarschot, Professor, Ph.D., University of Utrecht: Nuclear theory.

Frederick M. Walter, Professor, Ph.D., University of California, Berkeley: Observational stellar astronomy.

Thomas Weinacht, Assistant Professor, Ph.D., University of Michigan: Ultrafast optical physics; coherent control of molecular dynamics; time-domain spectroscopy.

William I. Weisberger, Professor, Ph.D., Massachusetts Institute of Technology: Theoretical physics. Member, Yang Institute for Theoretical Physics.

Amos Yahil, Professor, Ph.D., California Institute of Technology: Astronomy.

Chiaki Yanagisawa, Research Associate Professor, Ph.D., University of Tokyo: Experimental high energy physics.

Chen Ning Yang, Einstein Professor Emeritus, D.Sc., Princeton University; Ph.D., University of Chicago: Theoretical physics; field theory; statistical mechanics; particle physics. Member, Yang Institute for Theoretical Physics.

Ismael Zahed, Professor, Ph.D., Massachusetts Institute of Technology: Theoretical nuclear physics.

Teaching Assistants

Estimated number: 46

Physics

Physics is the study of the basic physical principles that govern our universe. This study uses the language of mathematics and is applied in all other natural sciences (astronomy, chemistry, biology, geology, etc.) and engineering. The objective of the major in Physics is to teach students those principles, and, in general, how to think scientifically about the physical world.

A basic education in physics is also applicable to many other fields, including astronomy, engineering, computer programming, geology, biophysics, medicine, medical technology, teaching, law, business, etc. Since the basic principles of physics do not go out of style, and will be the basis for many new technologies, the Physics major provides the ability to adapt to new conditions; hence its permanent value. After graduation approximately half of our Physics majors go on to graduate school, either in physics or in a related field (such as those mentioned above). The other half initially take positions in industry, but many of them later return to graduate school.

Astronomy

See the Astronomy entry in the alphabetical listings of Approved Majors, Minors, and Programs for Astronomy courses and major requirements.

Courses Offered in Physics

See the Course Descriptions listing in this Bulletin for complete information.

PHY 104 Opportunities in Physics

PHY 112-E Light, Color, and Vision

PHY 113-E Physics of Sports

PHY 114-E Electromagnetism, Waves and Radiation for Sports Science

PHY 115 Physics of Sports Laboratory

PHY 116 Electromagnetism, Wave and Radiation for Sports Science Laboratory

PHY 119-E Physics for Environmental Studies

PHY 121-E, 122-E Physics for the Life Sciences I, II

PHY 123, 124 Physics for Life Sciences Laboratory I, II

PHY 125-E Classical Physics A

PHY 126-E Classical Physics B

PHY 127-E Classical Physics C

PHY 131-E, 132-E Classical Physics I, II

PHY 133, 134 Classical Physics Laboratory I, II

PHY 141-E, 142-E Classical Physics I, II: Honors

PHY 191, 192 Transitional Study

PHY 200 Physics Today

PHY 237-H Current Topics in World Climate and Atmosphere

PHY 251 Modern Physics

PHY 252 Modern Physics Laboratory

PHY 277 Computation for Physics and Astronomy

PHY 287 Introduction to Research

PHY 291 Transitional Study

PHY 300 Waves and Optics

PHY 301, 302 Electromagnetic Theory I, II

PHY 303 Mechanics

PHY 306 Thermodynamics, Kinetic Theory, and Statistical Mechanics

PHY 308 Quantum Physics

PHY 310 Probability and Statistics for Experimental Physics

PHY 311 Connections in Science

PHY 313-H Mystery of Matter
PHYSICS

PHY 335  Electronics and Instrumentation Laboratory
PHY 390  Special Topics in Physics
PHY 403  Nonlinear Dynamics
PHY 405  Advanced Quantum Physics
PHY 407  Physics of Continuous Media
PHY 408  Relativity
PHY 431  Nuclear and Particle Physics
PHY 445  Senior Laboratory
PHY 447  Tutorial in Advanced Topics
PHY 452  Lasers
PHY 472  Solid-State Physics
PHY 475  Undergraduate Teaching Practicum
PHY 487  Research

Requirements for the Major in Physics (PHY)
[Changes in red are effective Fall 2005]

The major in Physics leads to the Bachelor of Science degree. All courses must be passed with adequate course grades. (See Notes below.) Completion of the major requires approximately 67 credits.

A. Courses in Physics

PHY 131/133, 132/134 Classical Physics I, II and Laboratories (See Note 1)
PHY 251/252 Modern Physics and Laboratory
AST/PHY 277 Computation for Physics and Astronomy
PHY 300 Waves and Optics
PHY 301 Electromagnetic Theory
PHY 303 Mechanics
PHY 306 Thermodynamics, Kinetic Theory, and Statistical Mechanics
PHY 308 Quantum Physics
PHY 335 Electronics and Instrumentation Laboratory
PHY 445 Senior Laboratory I

Notes:
1. The sequence PHY 125, 126, 127 or PHY 141, 142 may substitute for PHY 131/133, 132/134.
2. At least four courses numbered 300 or above must be taken at Stony Brook.
3. Each course numbered 300 or above must be completed with a grade of C or higher; a maximum of three courses at the 100 or 200 level passed with a grade of C- may be applied to the major.

B. Courses in Mathematics

1. One of the following sequences:
   MAT 131, 132 Calculus I, II
   or MAT 141, 142 Honors Calculus I, II
   or MAT 125, 126, 127 Calculus A, B, C

2. One of the following:
   MAT 205 Calculus III
   or MAT 203 Calculus III with Applications
   or AMS 261 Applied Calculus III

3. One of the following:
   MAT 305 Calculus IV
   or MAT 303 Calculus IV with Applications
   or AMS 361 Applied Calculus IV: Differential Equations

Note: Equivalency for MAT courses achieved on the Mathematics Placement Examination is accepted as fulfillment of the corresponding requirements, as indicated in the Course Descriptions section of this Bulletin.

C. Courses in Related Fields

Twelve credits of acceptable physics-related courses that complement a Physics major's education. A list of acceptable courses is posted in the Physics and Astronomy Undergraduate Office.

D. Upper-Division Writing Requirement

Students are certified as satisfying the upper-division writing requirement by completing a writing project within their major. Scientific research results in journal publications use a terse language, but physicists and astronomers must also write engagingly in funding applications and in communicating their work to others, and this is what is expected in writing submitted to meet this requirement. Within the first month of the semester in which the student plans to satisfy the requirement, the student should speak with the course instructor or research supervisor about his or her intent to expand upon a course assignment (for example by adding a discussion of the history and significance of a physics experiment) or research project to meet the upper-division writing requirement. If there are questions over the suitability of the proposed writing project, the student should discuss the proposal with the undergraduate program director. Students are encouraged to seek comments on a draft of their text during the course of the semester, and the final text should be submitted to the instructor or research supervisor by the last day of classes for that semester. The course instructor or research supervisor will read the paper for evidence that the student’s writing meets the requirement and will forward the paper and their recommendation to the undergraduate program director for consideration. The undergraduate program director makes the final determination. The satisfaction of the writing requirement is certified independently of the course grade, and is best completed in the junior year.

Honors

To receive the Bachelor of Science in Physics with honors, in addition to having completed all the requirements for the B.S. in Physics a student must satisfy the following:

1. PHY 487 Research
2. Two other 400-level physics courses
3. Overall grade point average of at least 3.30 in all physics courses numbered 300 or higher.

The Research Program

A student desiring to prepare for graduate study in physics has considerable flexibility in the choice of courses. The following sample program is suggested:

Freshman Year

PHY 131/133 Classical Physics I and Laboratory
or PHY 141 Classical Physics I: Honors
PHY 132/134 Classical Physics II and Laboratory
or PHY 142 Classical Physics II: Honors
MAT 131 Calculus I
MAT 132 Calculus II

Sophomore Year

PHY 251/252 Modern Physics and Laboratory
PHY 277 Computing for Physics and Astronomy Majors
PHY 300 Waves and Optics
MAT 205 Calculus III
MAT 305 Calculus IV
CHE 131, 132 General Chemistry
or CHE 141, 142 Honors Chemistry

http://www.stonybrook.edu/ugbulletin
Sample Course Sequence for the Major in Physics

**Freshman**

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 131/133</td>
<td>4</td>
</tr>
<tr>
<td>MAT 131</td>
<td>4</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>14</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 132/134</td>
<td>4</td>
</tr>
<tr>
<td>MAT 132</td>
<td>4</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>17</strong></td>
</tr>
</tbody>
</table>

**Sophomore**

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 251/252</td>
<td>4</td>
</tr>
<tr>
<td>PHY/AST 277</td>
<td>3</td>
</tr>
<tr>
<td>MAT 205</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 300</td>
<td>4</td>
</tr>
<tr>
<td>PHY 306</td>
<td>3</td>
</tr>
<tr>
<td>MAT 305</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>16</strong></td>
</tr>
</tbody>
</table>

**Junior**

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 301</td>
<td>3</td>
</tr>
<tr>
<td>PHY 303</td>
<td>3</td>
</tr>
<tr>
<td>PHY-related elective</td>
<td>3</td>
</tr>
<tr>
<td>MAT 341</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 302</td>
<td>3</td>
</tr>
<tr>
<td>PHY 308</td>
<td>3</td>
</tr>
<tr>
<td>PHY 335</td>
<td>3</td>
</tr>
<tr>
<td>MAT 342</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

**Senior**

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 487</td>
<td>3</td>
</tr>
<tr>
<td>PHY elective</td>
<td>3</td>
</tr>
<tr>
<td>PHY-related elective</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 445</td>
<td>3</td>
</tr>
<tr>
<td>PHY elective</td>
<td>3</td>
</tr>
<tr>
<td>PHY-related elective</td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>

The Physics of Materials Program

A student wishing to pursue a career in engineering physics with emphasis on materials science and engineering would, in addition to completing the requirements for the B.S. in Physics, take courses during the junior and senior years in the Department of Materials Science and Engineering. After the successful completion of a minimum of five courses in the Department of Materials Science and Engineering (the student should consult with the directors of undergraduate studies in both the Department of Physics and Astronomy and the Department of Materials Science and Engineering), the student would be eligible for admission to the master’s degree program in Materials Science and Engineering.

CHE 133, 134 General Chemistry Laboratory  
or CHE 143, 144 Honors Chemistry Laboratory

**Junior Year**

PHY 301, 302 Electromagnetic Theory  
PHY 303 Mechanics  
PHY 306 Thermodynamics, Kinetic Theory, and Statistical Mechanics  
PHY 308 Quantum Physics  
PHY 335 Electronics and Instrumentation Laboratory  
MAT 341 Applied Real Analysis  
MAT 342 Applied Complex Analysis

**Senior Year**

PHY 405 Advanced Quantum Physics  
PHY 445 Senior Laboratory I  
At least two courses selected from:  
PHY 403 Nonlinear Dynamics  
PHY 408 Relativity  
PHY 431 Nuclear and Particle Physics  
PHY 447 Tutorial in Advanced Topics  
PHY 472 Solid-State Physics  
PHY 487 Research

Note: Of the courses mentioned above, MAT 341, MAT 342, PHY 302, and PHY 487 are not required for the B.S. in Physics.
Physics Secondary Teacher Education Program

See the Education and Teacher Certification entry in alphabetical listings of Approved Majors, Minors, and Programs.

Introductory Physics Sequences

The Department of Physics offers four Introductory Physics Sequences. The PHY 121/123, 122/124 sequence is designed specifically for students majoring in biological sciences or pre-clinical programs. Any of the other three sequences (PHY 131/133, 132/134; PHY 141, 142; PHY 125, 126, 127) together with PHY 251/252 constitute an intensive introduction to classical and modern physics for those who may major in Physics, other physical sciences, or engineering. These three Introductory Physics Sequences cover the same material, although the pace is different. The two-semester sequence (PHY 131/133, 132/134 or PHY 141, 142) should be taken only by students who are prepared for a pace considerably faster than that of the PHY 125, 126, 127 three-semester sequence. The PHY 141, 142 sequence is designed for students with the strongest interest and preparation in physics and mathematics. The flow chart shows the four basic Introductory Physics Sequences available. (In the PHY 125, 126, 127 sequence, 126 and 127 may be taken in either order.)

The Minor in Physics (PHY)

The minor in Physics is available for those who want their formal University records to emphasize a serious amount of upper-division work in physics. All courses offered for the minor must be passed with a letter grade of C or higher. Completion of the minor requires 20 physics credits beyond the Introductory Physics Sequence.

Requirements for the Minor in Physics for students with majors in the College of Arts and Sciences:

1. PHY 251/252 Modern Physics
2. PHY 300 Waves and Optics
3. PHY 301 Electromagnetic Theory
4. PHY 303 Mechanics
5. PHY 335 Electronics and Instrumentation Laboratory
6. One of the following:
   PHY 306 Thermodynamics, Kinetic Theory, and Statistical Mechanics
   CHE 302 Physical Chemistry II

Requirements for the Minor in Physics for students with majors in the College of Engineering and Applied Sciences:

1. PHY 251 Modern Physics
2. One of the following:
   PHY 300 Waves and Optics
   ESE 321 Electromagnetic Waves and Wireless Communication
   ESG 281 An Engineering Introduction to the Solid State
3. One of the following:
   PHY 301 Electromagnetic Theory
   ESE 319 Introduction to Electromagnetic Fields and Waves
4. PHY 303 Mechanics
5. One of the following:
   PHY 306 Thermodynamics, Kinetic Theory, and Statistical Mechanics
   ESM 309 Thermodynamics of Solids
   MEC 398 Thermodynamics II
6. One of the following:
   PHY 335 Electronics and Instrumentation Laboratory
   ESE 314 Electronics Laboratory B