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ABSTRACT

We report successful fitting of a Roche model, with a surface temperature gra-

dient following the von Zeipel (1924) gravity-darkening law, to observations of

Altair made with the Navy Prototype Optical Interferometer (NPOI). We confirm

the claim (Ohishi, Nordgren, & Hutter 2004) that Altair displays an asymmet-

ric intensity distribution due to rotation, the first such detection in an isolated

star. Instrumental effects due to the high visible flux of this first magnitude star

appear to be the limiting factor in the accuracy of this fit, which nevertheless

indicates that Altair is rotating at 0.90 ± 0.02 of its breakup (angular) velocity.

We confirm the apparent oblateness found by the PTI interferometer (van Belle,

et al. 2001) and show that the true oblateness is significantly larger owing to

an inclination of the rotational axis to the line-of-sight of ∼ 64◦. Of particular

interest, we conclude that instead of being substantially evolved as indicated by

its classification, A7VI-V, Altair is only barely off the ZAMS and represents a

good example of the difficulties rotation can introduce in the interpretation of

this part of the HR diagram.
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1. Introduction

Altair (variously α Aql, 53Aql, HR7557, HD187642, of spectral type A7V or A7VI-

V) is one of the brightest stars in the Northern sky, sharing membership in the “Summer

Triangle” with two other notable A stars. Unlike Vega and Deneb, Altair shows a rather

diffuse spectrum which was early recognized to be due to a large projected rotational velocity

variously estimated at 242 km s−1 (Uesugi & Fukuda 1982), 217 km s−1 (Royer et al. 2002),

and 200 km s−1 (Abt & Morrel 1995). These estimates of its projected velocity, a lower limit

for the true rotational velocity, are already a significant fraction of the breakup velocity,

estimated near 400 km s−1.

Altair has become a significant object in understanding the atmospheres of main se-

quence stars at masses near but above that of the Sun. Specifically, Altair and α Cep are the

two hottest stars showing Lyα and C II emission, taken as indicators of a chromosphere (Si-

mon, Landsman, & Gilliland 1994; Walter, Matthews, & Linsky 1995). The absence of these

indicators at earlier spectral types is taken to mean that significant convection disappears

at this point on the upper main sequence. We note that α Cep also has a high projected

rotation velocity with estimates of 246 km s−1 (Uesugi & Fukuda 1982), 196 km s−1 (Royer

et al. 2002), and 180 km s−1 (Abt & Morrel 1995) listed.

Altair’s known high rotation rate has promoted attempts to measure the geometrical

effects of rotation over the years, starting with the Intensity Interferometer (Hanbury Brown,

Davis, & Allen 1974). However, it was not until the near-IR observations with the Palomar

Testbed Interferometer (PTI; Colavita et al. 1999) by van Belle, et al. (2001) that a significant

flattening was detected. Comparison to classical (von Zeipel 1924) Roche models showed

the flattening was completely consistent with the observed projected rotation.

Although this agreement between theory and observation is nothing short of epochal, it

is incomplete. Oblateness, interpreted through Roche theory, displays the same degeneracy

between equatorial velocity and tilt (inclination) as the apparent rotation velocity: one

determines the quantity veq sin i well, but not the two separately. Nor can one determine the

sense of rotation, pro- or retrograde. Besides providing a test of the flattening predicted by

theory, oblateness measurements do yield the position angle (PA) of the angular momentum

vector, the projection of that vector on the plane of the sky.

In addition to flattening, von Zeipel (1924) predicted that for moderate rotation stellar

disks would display variable surface temperatures, hotter on the rotational axes and cooler

at the equator. Specifically, if one defines a local effective gravity accounting for centrifugal

acceleration, then the local effective temperature is related to the effective gravity as T 4

eff ∝

geff which is referred to as “gravity darkening”. With sufficient rotation and at intermediate
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inclinations, gravity darkening predicts that stellar disks will display asymmetric intensity

distributions.

As we describe below, this prediction is of great interest in the field of optical inter-

ferometry. Asymmetric intensity distributions produce significant imaginary components in

the visibilities, usually represented as a non-trivial “phase angle”. Recently developed tech-

niques for recovering a closely related quantity, “closure phase” (Baldwin et al. 1996; Benson

et al. 1997), are now being applied to the first round of stellar objects, (e.g., Wittkowski

et al. 2001).

Among the first objects observed by the Naval Prototype Optical Interferometer (NPOI;

Armstrong et al. 1998) in this mode was Altair. Although originally proposed as a follow-up

on the oblateness observations, the object was scheduled for observation after the 3-way beam

combiner was implemented, allowing measurement of closure phase around one complete

triangle. Examination of the phase data immediately revealed the intermediate phase angles,

unambigiously signaling the presence of an asymmetric intensity profile (Ohishi et al. 2003).

Using a model consisting of a limb-darkened disk and a bright spot, Ohishi, Nordgren,

& Hutter (2004) demonstrated both the previously discovered oblateness and the neces-

sity of including asymmetries in the intensity distribution. They argued that the probable

interpretation was that of rotational flattening and gravity darkening.

In the meantime we have become aware of some limitations in those data due to in-

adequate corrections for “deadtimes” in the avalanche photodiode detectors (APDs) which

affect the interpretation of this data set. We therefore reconsider that data set here using

a subset that is relatively immune to the detector problems, a full implementation of von

Zeipel’s theory (von Zeipel 1924) for the model fitting and redoing the reductions in a way

that dramatically reduces noise in the bluest channels. We find that a Roche model rotating

at 90% (angular velocity) of breakup and inclined ∼ 64◦ from pole-on fits the observations

with high fidelity.

We show that the parameter that sets the overall temperatures scaling for the model,

the effective temperature at the poles, Tp, is close to 8700K for this model, and the polar

surface gravity is correspondingly fairly high. This suggsts that Altair is less evolved than

one might naively expect from its spectral type and luminosity classifications.

In this model the equator is 1850K cooler than the pole. Given that the model includes

both polar brightening and a long equatorial swath of low intensity, this is a complex intensity

distribution, and the agreement with the observations is a strong endorsement for the simple

von Zeipel (1924) theory.
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Below, we describe the new reductions, give a brief review of Roche theory and then

present the fits. We note that the existence of large amounts of surface at near solar temper-

atures suggests that the role of Altair (and perhaps α Cep?) in defining the high temperature

end of convection on the main sequence may need to be reconsidered. We also note the re-

cent announcement that Altair is a low amplitude (δ Sct) pulsating star (Buzasi et al. 2005)

which may give hope that asteroseismology will be able to put useful limits on any gradient

of the angular velocity in the outer envelope.



– 5 –

2. Observations

Altair was observed on four nights, 25–27 May and 1 June of 2001, with the NPOI.

These are the same observations used by Ohishi et al. (2003) and Ohishi, Nordgren, &

Hutter (2004). We refer the reader to those papers for a journal of observations and a

description of the observing details, but we briefly reprise them here. We have focused here

on the data set obtained May 25, 2001. This is by far the largest set of data, while the other

data do not increase the range of hour angles observed in the first night.

The observations used the Astrometric West (AW), Astrometric East (AE), and West 7

(W7) stations, forming a triangle of interferometric baselines with lengths of 37.5m (AW–

AE), 29.5m (W7–AW), and 64.4m (AE–W7). The backend combined these three input

beams to produced three output beams, with one baseline on each. The output beams

were dispersed into 32 spectral channels covering λλ443− 852 nm, although the bluest four

channels (λλ443 − 460 nm) of the W7–AW output were not functioning.

The Altair observations were interleaved with observations of a visibility calibrator,

ζ Aql (A0V), about 12◦ away on the sky. We estimated its uniform-disk angular diameter θUD

in two ways. The more straightforward was to use the color–magnitude–diameter calibration

of Mozurkewich et al. (1991) based on observations with the Mark III interferometer. From

the (R − I) index and V magnitude (0.00 and 2.99, respectively; Johnson et al. 1966), we

estimate a uniform-disk diameter θUD of 0.83mas at λ800 nm.

The second method was to use a similar color–magnitude–diameter relation based on

(V − K) and V (Mozurkewich et al. 2003), also derived from Mark III data, that produces

the limb-darkened diameter θLD and then to multiply by the ratio θUD/θLD calculated from

the expected limb darkening for a star of the same type as ζ Aql. The (V − K) color

(0.07; Johnson et al. 1966) and V magnitude result in θLD = 0.90mas. We integrated the

monochromatic limb-darkening coefficients from Van Hamme (1993) for a star with Teff =

9500K and log g = 4.1 over the same 800 nm band of the Mark III used by Mozurkewich et al.

(2003). The resulting integrated limb-darkening coefficient u is 0.28, which in turn results

in θUD = 0.87mas. We therefore adoped θUD = 0.85± 0.02mas as the estimated diameter of

ζ Aql. The uncertainty of the visibility amplitudes due to the uncertainty in the calibrator

diameter is negligible on the two shorter baselines, but ranges from 1% to 3% on the 64m

baseline. Simulations of the effects of rotation in ζ Aql over possible inclinations indicated

that its closure phase can rise in the blue but will never reach 2◦ and can be of either sign

depending on position angle. In particular phase errors from this source are always small

compared to the observational errors, channel by channel, and have been ignored.
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3. Data reduction

3.1. Incoherent integration

The NPOI observes interference fringes by modulating the optical path on the delay line

for each array element, using a triangle-wave pattern at a frequency of 500Hz. The resulting

modulation of the intensity is detected in 8 bins evenly spaced over one fringe in each channel

by Avalanche Photo Diodes (APD). The phase of the intensity modulation changes on time

scales of milliseconds since the fringe tracker employed by NPOI tracks the envelope of the

(bandwidth limited) fringe packet rather than the fringe phase.

The data in the delay bins were processed to produce five data products at each wave-

length: the complex visibility and squared visibility modulus V 2 for each baseline, and the

triple product |V1||V2||V3| exp(iφcl), where |Vi| is the amplitude of the complex visibility on

baseline i. The closure phase φcl = φ1 + φ2 + φ3, where φi is the phase of the complex

visibility on baseline i. Although the baseline phases themselves are affected by atmospheric

turbulence, those effects cancel in the sum of three phases around a closed triangle, so the

closure phase preserves information about the source structure. These data products are

produced for each 2ms cycle of delay modulation. In the standard incoherent integration as

described by Hummel et al. (1998), the squared visibilities and complex triple products are

summed to provide average values in one second intervals.

3.2. Coherent integration

We employed a new algorithm for the coherent integration of the complex visibilities of

the NPOI first presented by Hummel et al. (2003). Compared to the incoherent integration of

the squared visiblities, coherent integration achieves a higher SNR of the averages due to the

larger number of photons detected in a coherent sample of the fringe. We have exploited this

fact to recover meaningful results from all NPOI spectrometer channels, while the channels

on the blue side of about 560 nm had been usually discarded in incoherent reductions due

to the insufficient number of photons detected during the instrumental coherent integration

time of 2ms. For the coherent integration time we selected 200ms, and the resulting complex

visibilities were both combined to form complex triple products and transformed individually

into squared amplitudes of the modulus. Every ten samples of these quantities were then

averaged (averaging real and imaginary part of the complex triple products separately) for

a total integration time per data point of 2 s.

The alignment of the raw visibility phasors neccessary before integration in order to
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avoid detrimental coherence losses was performed as follows. Two steps are necessary to

rotate the phasors onto a common fringe in order to enable a phase tracking algorithm.

First, average power spectra of the channeled visibility as a function of delay were

computed for 10 ms intervals. Their maxima, corresponding to the group delays of the

fringe packets, are not zero but have a typical RMS on the order of one micron as the NPOI

group delay fringe tracker tries to center the fringe, but does not lock onto its phase.

Second, from the deviation in position of the fringe from the estimated geometrical

value, which is non-zero and has a typical RMS on the order of 10µm due to atmospheric

refractive index fluctuations, we estimated the differential amount of air and thus the phase

shift between the peak of the envelope of the fringe packet and the nearest fringe peak. In

other words, this phase is the phase of the complex Fourier transform of the visibility as a

function of wavenumber. The modulus of this transform peaks at the value of the group

delay. The phase of the transform at this delay is called the group delay phase.

We converted the group delay phase to a delay using the mean wavelength of the white-

light fringe, and added it to the group delay. Rotation of the visibility phasors of different

channels by an angle corresponding to the ratio of this delay value and the wavelength of

the spectrometer channel will align them on the same fringe. At this point, the algorithm

implements a photon-noise limited off-line fringe phase tracker enabling the use of much

longer coherent integration times.

3.3. Phase bootstrapping

We used an important modification of the above procedure by applying the phase boot-

strapping method, a design feature of the NPOI interferometer (Armstrong et al. 1998). It

exploits the fact that the sum of the fringe delays along a closed loop of baselines is zero

(if the same fringe is identified on each baseline). Therefore, if a long baseline in a multi-

telescope array sees a low contrast fringe due to, e.g., object extension, and this baseline

involves two telescopes which are at the same time involved with other telescopes of the

array on much shorter baselines seeing much higher fringe contrast, the fringe delay of the

long baseline can be computed from the fringe delays on the shorter baselines which are

”bootstrapping” the long one. In the simple case of the observations described on Altair,

the fringe delay on the long 64m W7–AE baseline is just the difference between the fringe

delays on the shorter AE–AW and W7–AW baselines.
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3.4. Averaging and editing

The 2 s data points are edited for outliers as described by Hummel et al. (1998). The

final averaging is done over the full length of a pointing (called a scan at NPOI) which lasts

typically 90 s. The computation of the formal errors also follows Hummel et al. (1998),

except that we have implemented a different approach for the complex triple products based

on a suggestion by D. Buscher (priv. comm.). Under simple assumptions the error of a

complex triple product is described by an error ellipse which has one axis aligned with the

triple product phasor. Assuming this we compute the error of the triple product as the error

of the imaginary and real parts of the mean after applying a rotation of all phasors by the

mean triple product phasor. The errors of amplitude and phase of the triple product are

then equal to the error of the real part and the error of the imaginary part divided by the

respective amplitudes.

3.5. Detector Non-linearity

A source of systematic error comes from deadtime in the pulse counting electronics

controlling the Avalanche Photodiode (APD) detectors. These systems saturate at about

1MHz and display significant non-linearity in the apparent count rates as they near this

limit. The nominal design of the detector systems included a τ = 200 ns deadtime, but we

have subsequently found that not only do those time constants vary significantly, channel to

channel, but also that in a given channel they depend on the mean signal level because of the

effects of heating. We believe that it will be possible to model and remove these effects, but

some effort is involved, which we will report on in the future. Unfortunately, these problems

were not recognized at the time the Altair observations were made.

However, we believe that through a rather unique set of circumstances the phase and

some of the amplitude measurements acquired during the 2001 observations are to first order

free of the effects of these non-linearities. One reason was that during these observations

only three stations were in use and the three spectrographs recorded single baseline data.

The other reason was that the amplitude and phase measurements from each channel

were accomplished with a simple Discrete Fourier Transform. By dithering the optical delay

at a frequency of ω the signal was modulated according to

I(t) = I0 [1 + V cos (ωt + φ)] (1)

where V is the (instrumental) amplitude of the visibility and φ the instantaneous phase. The
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detector system responded to the modulated signal according to

N(t) =
QI(t)

1 + τQI(t)
∼ N0(t) − τN2

0
(t) + · · · . (2)

Where Q is the quantuum efficiency, N(t) is the apparent pulse rate and N0(t) = QI(t) is

the true photon detection rate. In the linearized form we assumed τN0 << 1 which for a

300 kHz count rate, typical of the wider red channels on the higher visibility baselines, is

adequate to 1% or better. Substituting equation 1 into 2, clearing the quadratic cosine using

the half angle formula and collecting terms, this becomes

N(t) ∼ N̄0

[

1 − τN̄0

(

1 + V 2/2
)]

+ N̄0V (1 − 2τN̄0) cos(ωt + φ)

−
τN̄0

2
V 2

2
cos(2ωt + 2φ) (3)

where N̄0 = QI0. A DFT at the dither frequency now extracts an amplitude different than

the nominal N̄0V (and after division by the nominal mean signal produces an estimate that

can differ significantly from the true visibility amplitude). However, the phase comes through

the process unaffected, as do the frequencies of the minima in the visibility amplitudes. By

floating the overall amplitudes in the data reduction (see below) we retain the important

spatial scale information contained in the minima. But the most important conclusion is

that the phases may be assumed to be essentially free of detector induced biases.

3.6. Visibility calibration

The degradation of the measured visibilities due to atmospheric and instrumental effects

is measured, as with all interferometers, by observing calibrators stars with diameters as

small as possible to reduce uncertainties in the visibility estimates for them. As shown by

Hummel et al. (1998), the NPOI visibility amplitudes sometimes show a negative correlation

with the RMS of the delay line motion which is related to the seeing. But at other times,

instrumental effects which correlate with time or other systematic effects which correlate

with position on the sky (e.g., hour angle) can dominate the visibility variations. Therefore,

formal photon-noise based visibility errors usually require the addition (in quadrature) of a

calibration error which is derived from the residual visibility variations of the calibrator after

calibration. For the amplitude calibrations, we smoothed the calibrator visibilities with a

20min Gaussian kernel in hour angle, and obtained calibration errors ranging from about

4% at the red end to 15% at the blue end of the spectrometers. For the closure phase, we

used the same smoothing technique but applied to the calibrator phases as a function of

time.
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This standard NPOI procedure, however, did not yield satisfactory results as was recog-

nized during the model fitting with respect to the consistency of the fits to successive scans.

One can already see this from the results of Ohishi, Nordgren, & Hutter (2004) (their Fig. 6),

where amplitudes can be systematically high or low with the important characteristic that

the deviation is very consistently independent of wavelength. The effect is exacerbated by

the fact that due to the brightness of Altair, the formal amplitude errors are quite small. The

reason for the scan-to-scan variations is most likely the same as for the residual variations

of the calibrator after calibration, except that there is no perfect correlation due to target

and calibrator not being at the same location in the sky. (Past experience has shown that

visibilities do correlate quite well if the calibrator is very near the target.) Therefore, we

allowed the calibration for each scan and baseline to float by applying “achromatic” calibra-

tion factors to improve the fit between data and model. We will discuss the implications for

the model fitting in Section 4. Finally we note that an error in the calibrator star diameter

produces chromatic errors across the NPOI spectrometer as do uncompensated deadtime

corrections, neither of which can be removed by the calibration factors.
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4. Modeling

4.1. Roche Spheroids

The theory for the equilibrium shapes and surface properties of rotating stars was first

presented 80 years ago (von Zeipel 1924) assuming solid body rotation and a point source

gravitational potential. This model has proved quite successful in describing the figures of

stars in close binary systems, where tidal effects to first order produce the same distortions

as rotation (Collins 1989).

We use that model here, but note its limitations. First, there is no a priori reason that

stars should rotate as solid bodies, and the surface layers of the Sun have long been known to

rotate differentially. However, among the early results of helioseismology was the discovery

that the transition from the outer convection zone to the inner radiative layers coincided

with an abrupt transition to solid body rotation (Spiegel & Zahn 1992). Since early-type

stars have radiative envelopes and relatively small (in radius) convective cores, one might

expect solid body rotation to be a good approximation for the external layers of early type

stars.

There has been some observational support for this expectation. Reiners & Royer

(2004b) have analyzed the rotational profiles of a large number of A stars looking for evidence

of differential rotation following a solar-type latitudinal dependence. In the 78 stars for which

the determination could be made, they found 4 objects where pecularities were seen which

might be from differential rotation (or other causes). However, 95% of the line shapes were

fully consistent with solid body rotation.

In addition there is the long known consistency between the largest rotational velocities

measured in the early-type stars and the predicted maximum rotation velocities associated

with “equatorial breakup” (Frémat 2005). In recent decades (e.g., Tassoul 1978) it has been

demonstrated that rotation laws other than rigid rotation do not generally impose maximum

rotation velocities.

The second limitation, one which we will spend some time on, involves the exponent in

the Teff −geff relation (geff , the effective gravity, includes centrifugal terms). In the original

work von Zeipel (1924) considered the case of a fully radiative envelope, deriving the well

known “gravity darkening” relation Teff ∝ g0.25
eff . Lucy (1967) reconsidered the problem in

fully convective stars, deriving a much reduced gravity dependence, Teff ∝ g0.08
eff . Other

approximations lead to other exponents (see Reiners 2003, for references). In our nominal

calculations we adopt the original von Zeipel (1924) perscription. As we shall show, the

Altair observations bear significantly on this issue.
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Even in the limit of rigid rotation, the von Zeipel (1924) theory is only first order

in rotation rate. Distortions of the interior figure, allowing some gravitational quadrapole

contribution can be expected as rotation rates approach breakup. That is even more likely

if there are significant deviations from solid body rotation, even if confined to the inner

convective regions.

Probably even more relevant are the effects of radiation pressure, which is treated sim-

plistically in the theory, and stellar winds. Significant envelope extension due to radiation

can be expected in the low effective surface gravity regions of rapidly rotating stars. And we

would certainly expect a dramatic increase in mass loss at the equator, both due to enhanced

convection as gas temperatures decrease into the solar and sub-solar regime. We ignore all

these effects here, except to acknowledge the limitations inherent in this theory.

4.2. Roche Models

We have constructed a suite of programs to evaluate the run of specific intensity across

the surface of a Roche spheroid. The definitions of the various angles are from Collins

(1963). Otherwise, we follow the prescription for the surface figure and the notation given

by Hardorp & Strittmatter (1968) with one exception: following the discussion by Hardorp

& Scholz (1971) we take the polar radius, Rp, as a fixed parameter. Specifically we do not

allow it to be a function of the fractional rotation.

The modeling requires that we specify six quantities: the ratio of the angular rotation

to that of breakup, ω = Ω/Ωb, the inclination (or tilt) of the rotational axis, i, defined such

that i = 0 is pole-on, the position angle, PA, of the pole on the sky (measured North through

East), the angular diameter of the polar axis, θp, the effective temperature at the pole, Tp

and the surface gravity, or more commonly the logarithm of the surface gravity (cgs), at the

pole, log gp. From the relations in the cited references it is then possible to calculate the

(dimensionless) radius, R, of the star for a given stellar latitude, θ, and hence the surface

gravity geff and effective temperature (T 4(θ) = T 4

p (geff/gp)) at that latitude (see Hardorp

& Strittmatter 1968, for the definition of geff).

In practice we need to solve the inverse problem: given a point on the sky, (α, δ),

determine whether the point is on the stellar disk and if so what the corresponding latitude

and radius are. We have solved this problem explicitly using simple iteration, and first

and second order versions of Newton-Raphson iteration. The routines (written in the “C”

language) are quite flexible, reasonably fast and freely available (from the first author).

The properties of Roche models for isolated rotating early-type stars have recently been
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reviewed by Domiciano de Souze et al. (2002), who use a slightly different but completely

equivalent parameterization. Those authors summarize some of the results from their models

for massive stars, which have provided a useful check on our own routines.

Note that for stars with good parallaxes like Altair, specifying the polar surface gravity

and angular diameter is equivalent to specifying the mass and linear (polar) radius. These

in turn fix the breakup angular velocity, Ω2

b = (8/27)GM/R3

p, along with the equatorial

and projected velocities (when the inclination is specified). Finally, it is useful to recall

the relation between the polar radius and equatorial radius at breakup angular velocity:

Re,b = 3/2Rp. According to this first order theory the maximum rotational flattening is 2/3.

4.3. Model Atmospheres

The model definition is completed by specifying the specific intensity at each point on

the surface at each look angle and wavelength. As noted by the early authors, plane-parallel

model atmospheres are entirely adequate in the context of Roche models for stars on and

near the main sequence. The only exception is that these models develop a cusp at the

equator at critical rotation velocity. However, the cusp does not appear until fractional

rotation velocities of ω = 0.99 or larger and, as we have indicated, the breakdown of the

plane-parallel approximation is only one of several problems with the model in this limit.

4.4. Implementation of Roche code

The Roche code consists of a library of functions written in C, with a main function

enabling its use as standalone software and a wrapper enabling it to be called from within

the NPOI standard data reduction software OYSTER. The Roche spheroid parameters are

part of the standard hierarchical model format of OYSTER and are passed to the Roche

code along with pointers to the extensive tables of linear, logarithmic, and square-root law

monochromatic limb darkening coefficients for a grid of Kurucz model atmospheres as pub-

lished by Van Hamme (1993). The Roche code, with the additional input of the (u, v)

coordinates, computes the visibilities for a grid of wavelengths supplied by OYSTER, which

are subsequently integrated over the NPOI bandpasses.

The fitting of the model parameters (except for the gravities) utilizes the Marquardt-

Levenberg algorithm (Press et al. 1992) implemented in OYSTER, with the derivatives

computed numerically. In addition to the visibility and phase measurements the reductions

were also constrained to reproduce the observed V magnitude. This provided particularly



– 14 –

strong constraints on the polar effective temperature.
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5. Discussion

5.1. Model Fitting

The analysis proceded with few complications. In particular, a close examination of

the χ2 surface indicated no unusual morphology, and indeed the iterations converged to the

same final solution independent of our starting guess, whether from larger or smaller values

of the parameters. Our final solution, given in column 2 of Table 1, is based on the triple

phases and triple amplitudes only, the latter with an overall floating multiplier for each scan

as described above. The reduced χ2 for this solution is still a bit large, which we attribute to

some residual non-grey problems of unknown origin in the amplitudes, as shown in Figure 1.

The fit to the closure phases, Figure 2, on the other hand is remarkable, showing no trends

with wavelength or hour angle.

Because of the residuals in the triple amplitudes we have decided to take a conservative

stance with regard to our error estimates. We have run a separate reduction using the squared

visibilities for the individual baselines in place of the triple amplitudes. This solution, which

has a substantially larger reduced χ2, reflecting the larger residuals in the amplitudes of the

individual baselines, is summarized in column 4 of Table 1. Our adopted errors, shown in

column 3, are the difference between these two solutions.

The fairly large χ2 for our best model requires comment. As we have indicated, the

problem is that the formal errors on the data, particularly the amplitudes, are very small due

to the very high signal levels. From the variation of the calibrators we know the unmodelled

errors in the amplitudes are larger than this. A rough estimate of those errors, which were

not included in the solution, suggests the underlying χ2 is closer to 1.5, although the floating

amplitude multipliers make an exact estimate difficult. This is still higher than desirable,

but we feel the error estimates we provide adequately characterize the quality of the fit.

Figure 3 shows how Altair appears projected on the sky. The intensity distribution

at 500 nm, as would be seen for example by an interferometer, is color encoded: blue for

high intensity, red for low intensity. Except for limb-darkening, this is also a temperature

encoding. The range in intensities, a factor of 18, is about a factor of 2.5 more than would

be expected for an non-rotating star of this spectral type.

Included in Table 1 is the integrated color as calculated by the models. Although we

force all models to reproduce the observed V magnitudes, as described above, this constraint

does not automatically mean the colors will be reproduced. The fact that the colors do

agree with the measurements is a significant consistency check on the models, particularly

given that the range of temperatures across the surface could produce a wide range of colors
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Fig. 1.— Triple amplitudes as fit by best Roche model. Error bars of ±σ are shown. The

analytic fits (solid line) include a constant multiplicative renormalization.
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Fig. 2.— Triple phases as fit by the best Roche model. No renormalization has been applied.
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Fig. 3.— A false-color rendering of Altair’s visible surface. Intensity at 500 nm increases

from red to blue. Except for the effects of limb-darkening, this is also a map of temperature.
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depending on the weighting. A number of ancillary parameters derived from the adopted fit

are given in Table 2 and are discussed further in the §6.

5.2. Comparison with previous results

As noted, Altair has been the subject of a number of interferometric measurements

over the years, most notably by the PTI array (van Belle, et al. 2001). The diameter

determinations are not simply comparable, even if we consider only the projected major and

minor axes of our model, since the PTI observations were fit to the physical dimensions

of a Roche model, which included limb-darkening but not gravity darkening. Still, our

determination of an equatorial radius of 1.97R� seems in reasonable accord with their quoted

1.88R�.

More problematic are the reported position angles of the rotational pole. First, we

note that in a preliminery report of this work (Peterson, Hummel, Pauls, et al. 2004) the

pole is off by 180◦ due to a sign error. More complicated is the disagreement between the

position angle from the PTI measurements, −25◦ ± 9 and our 123.2◦ ± 2.8. Examination

of the measurements tabulated in that paper (van Belle, et al. 2001) suggests that the

identification of the baselines with the data have been reversed: the measured visibilities

for the NW baseline have been incorrectly identified as from the NS baseline and vice-versa.

If so the correct position angle would be obtained by reflecting the PTI result through the

bisector of the two baselines. Doing this predicts a position angle of 115.◦9, in complete

agreement with our result.

Recently Reiners & Royer (2004b) have reported the determination of Altair’s equatorial

rotational velocity, veq ≤ 245 km s−1. They analyzed the star’s rotational broadening profile

to determine the first two zeros of its Fourier transform, the ratio of which has been shown

by Reiners (2003) to depend on the equatorial velocity rather than the usual v sin i. This

is a new approach to measuring total velocities in stars, and it is difficult to know how

much weight it should be given. One notable aspect of that analysis was the adoption of an

exponent for the gravity darkening law (β ∼ 0.09) that was about 1

3
that of the von Zeipel

(1924) value. We discuss this aspect of calculating rotationally distorted stars next.

5.3. Gravity Darkening

While we have several lines of reasoning, described above, that lead us to believe that

solid body rotation is valid for these models, the situation is not so clear with regard to the
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exponent on the gravity darkening law, Teff ∝ gβ
eff . The classical work of von Zeipel (1924)

would seem to apply to an A star, even one somewhat evolved, yielding β = .25. However,

convection does occur in late A stars and particularly in the photosphere where it competes

with radiation in carrying the flux. It is then important to note that Lucy (1967) has shown

that for small distortions the appropriate coefficient in fully convective envelopes is closer to

β ' 0.08.

This leaves matters in a somewhat uncertain state. On the one hand, there are stars

in the transition region between having fully convective and fully radiative envelopes, Altair

arguably one of them, and there is no obvious guidance in choosing an appropriate value for

this parameter. On the other hand, even where the envelopes are unambigiously in either one

of those states or the other, the classical results apply under rather different circumstances

which we next discuss.

Both the von Zeipel (1924) and Lucy (1967) results treat rotation as a perturbation.

However, in the radiative case where uniform rotation is adequate (and issues like mass loss,

etc can be ignored), the quantity treated as a perturbation is the size of the quadrapole

moment of the gravitational field. Since stars are centrally condensed, even for velocities

approaching critical the distortions in the core are modest and one can expect that the

analysis given by von Zeipel (1924) will be reasonably accurate. This has been found to be

true in practice (Sackmann 1970).

For the convective case the gravity darkening exponent is found by analyzing the adia-

bats found in the envelopes of representative stars. Lucy (1967) quite explicitly points out

that the derivation is valid only for small changes in the effective gravity. Of course, the

effective gravity changes by orders of magnitude as rotation approaches critical, and it is not

clear whether the exponent derived by Lucy can be used to describe gravity darkening for

anything but the most modest rotation. Again, this is in contrast to the modest contribution

of an induced gravitational quadrapole, even for stars rotating at breakup.

Even so, in a recent series of papers Claret (2003, and references therein) has attempted

to at least deal with the issue of a smooth interpolation between these two extreme cases. He

has noted that as stars evolve off the main sequence and toward the red giant branch their

interior structures trace out approximately straight line loci in a (log Teff , log g) diagram. For

massive (mostly radiative) stars the slope of this line is about 0.25, and for intermediate mass

stars (∼ 1M�, mostly convective) the slope is about 0.06, the two values being remarkably

close to what is expected. Working with the interiors codes, Claret (2003) is able to evaluate

the value of this exponent at each point in the evolutionary paths of models covering 40 ≥

M� ≥ 0.08, offering the results as appropriate exponents to use in rotating stars and stars

in close binary systems.
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This is a constructive suggestion for the thorny problem of choosing an appropriate

gravity darkening law. However, we are not fully convinced of the leap of going from deriv-

ing a quantity based on evolutionary changes to using it to describe the effects of rotational

distortion. One might make the case for small amounts of rotation or if it could be shown

that rotational distortions and evolutionary effects were close to being homologous trans-

formations from one to the other. But rotational distortions are nothing like homologous

to evolutionary changes and it is not at all clear how well these ,scale=.75“interpolations”

work.

The observations reported here bear on this problem. We have tried converging our

Roche models using the value β = 0.09 adopted by Reiners & Royer (2004b). The results

are shown in column 5 of Table 1. To achieve the degree of asymmetry found in the triple

phase data with this low exponent value, the rotation parameter is forced to near critical

rotation, ω ∼ 0.978. In turn the predicted projected rotational velocity, v sin i ∼ 295 is

in serious conflict with the observed value and the predicted color significantly redder than

observed. Further, the reduced χ2 is significantly worse for this fit.

We feel it is premature to use these observations to derive a “best” value of the gravity

darkening parameter until the remaining amplitude residuals are better understood. How-

ever, since it is the phase measurements which are sensitive to asymmetries in brightness

across the disk that are being challenged here, it does appear that the von Zeipel (1924)

value for that parameter is superior to the value obtained from the Claret (2003) tables for

Altair.

5.4. Hβ

In Figure 4 we show the blue squared visibilities of the AE-AW baseline for the 0 .W83

observation. The notable feature at 486 nm is Hβ, the agreement with the calculations

shown in this scan, and the others not shown, is striking. This feature is nearly centered

in the 486.3 nm channel. In contrast Hα, which has a smaller equivalent width and is split

between channels at λ 665.4 and λ 648.7, is much less noticable. This close agreement is a

nice confirmation of the details of the model fits.
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Fig. 4.— One of the observed V2’s for the AE-AW baseline. The effect of the strong Hβ

feature in the λ 468.3 channel is clearly evident and well matched by the model.
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6. Conclusions

6.1. Imaging Altair

The primary result of these observations is, we believe, the first detection of asymmetric

surface intensities on the surface of a star induced by rotation. Although we have imposed

a model on the data and fit the model parameters, the simple conclusion, first reported

by Ohishi, Nordgren, & Hutter (2004), is that the surface of Altair displays an extremely

asymmetric intensity distribution and that the asymmetry is consistent with that expected

from the known high rotation and with the previously reported oblateness (van Belle, et al.

2001). We have imaged the surface of an A star.

In Table 2 we summarize various physical parameters for the adopted model - column 4

of Table 1. Most quantities should be self-explanatory. Subscript “B” refers to the model if

it were rotating at breakup. The angular diameter θm is for the projected minor axis while

θM is for the projected major axis, i.e., the angular diameter of the equator.

6.2. The status of Altair

Knowing now the rotational state of Altair, we can now better answer fundamental

questions such as its evolutionary status. Over the years Altair has been classified A7 IV-V

(e.g., Johnson & Morgan 1953), the luminosity class usually indicating an object slightly

past the end of its main sequence evolution while the spectral type is that of a star having

an effective temperature in the vicinity of 7800K (e.g., Erspamer & North 2003; van Belle,

et al. 2001). In the context of analyzing Altair’s pulsations, it is important to know in detail

its evolutionary state, mainly the extent of its core.

Fortunately, in the context of rigid rotation, this is not so difficult. Early results (e.g.,

Sackmann 1970) showed that two quantities were relatively insensitive to the effects of ro-

tation: polar radius and total luminosity. The Roche model fits give polar radius directly

while it is a straightforward matter to calculate the total luminosity, given a model fit.

These two quantities are not perfectly conserved. In the range of interest, 3 M� ≥ M ≥

1.4 M�, both quantities decrease with increasing rotation, approximately in proportion to

ω2, reaching a maximum of about 6% in luminosity and 1.5% in radius (Sackmann 1970).

For stars in the neighborhood of 1.8 M�, rotating with ω2 ∼ 0.8 we find from the Sackmann

(1970) calculations that the non-rotating star would be 4% more luminous and 1% larger

than our deduced polar radius.
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To estimate the parameters of the appropriate non-rotating star we have used the evo-

lutionary tables by the Geneva group (Schaller, Schaerer, Meynet & Maeder 1992). These

models were calculated with modest convective overshoot (0.2Hp). We have used the grid

for a composition of X = 0.68, Y = 0.30, Z = 0.02.

The quantities given in Table 2 as “Non-rotating” are those estimated from the Schaller,

Schaerer, Meynet & Maeder (1992) models and are quite striking. The last entry in Table 2

is the mass fraction of hydrogen remaining in the core. This is to be compared to a starting

value of Xc = 0.68. Altair is almost on the ZAMS.

6.3. Chromospheric indicators

As mentioned in the §1, Altair, along with α Cep, is one of two A7 objects in which cer-

tain ultraviolet emission lines, taken as indicators of chromospheric temperature inversions,

are seen. No objects of earlier spectral type show these features and it is usually argued

that these therefore represent the hottest photospheres where convection is still capable of

creating such temperature profiles. The model for Altair adopted here calls that conclusion

into question. As shown in Table 2 Altair has a broad swath of 6900K gas at it’s equator,

which is the likely source of the strong convection. We also note the recent announcement

(van Belle 2005) that substantial oblateness and gravity darkening have been found in α Cep,

suggesting significant amounts of cool, convective gas in that object as well.

6.4. A δ Scuti star

As we indicated in the §1, rather than just being another rotating A star, Altair may

prove a very valuable laboratory for examining the internal rotation state of a star with

a predominantly radiative envelope. Buzasi et al. (2005) have announced the discovery of

δ Scuti pulsations in Altair and have identified several of the periods. This was immediately

recognized as providing a potential probe of the interior structure and particularly the rota-

tion law and an attempt has been made to identify and model the modes (Suárez, Bruntt,

& Buzasi 2005). Unfortunately, not knowing the rotational state of the star and making

the assumption that equator-on was the most likely orientation, Suárez, Bruntt, & Buzasi

(2005) adopted a total rotation significantly lower than now seems likely. Other effects of this

choice included identifying the evolutionary state as being substantially more advanced than

we believe is the case. As is clear from their results, velocities above the 180–240 km s−1range

they investigated lead to rapid changes in the oscillation modes.
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It will not be an easy task to tap the information being provided by Altair.

The work done with the NPOI interferometer was performed through a collaboration

between the Naval Research Lab and the US Naval Observatory in association with Lowell

Observatory, and was funded by the Office of Naval Research and the Oceanographer of the

Navy. This research has made use of the SIMBAD literature database, operated at CDS,

Strasbourg, France.

Facilities: NPOI.
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Table 1. Roche Model Fits for Altair

Parameter 3-Amp/φ Errors V 2 & 3-φ β = 0.09

ω = Ω/Ωc 0.90 ±0.02 0.88 0.978

θp (mas) 2.96 0.04 3.00 3.04

Tp (K) 8740 140 8600 7980

i (deg) 63.9 1.7 62.2 65.6

PA (deg) 123.2 2.8 120.4 97.4

χ2/DOF 3.8 9.5 13.4

V (obs: 0.77) 0.765 0.765 0.76

B-V (obs: 0.22) 0.215 0.22 0.26

Veq sin i (km s−1) 245 231 295
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Table 2. Altair Physical Parameters

Quantity Unit Value

Rotating Parameters

Veq km s−1 273

Veq,B km s−1 374

Ω c/d 2.71

ΩB c/d 3.01

Tp K 8740

Teq K 6890

Rp R� 1.636

Req R� 1.988

θm mas 3.056

θM mas 3.598

log L L� 1.027

log gp cgs 4.266

log geq cgs 3.851

Non-rotating Parameters

M M� 1.78

R R� 1.65

log g cgs 4.25

Teff K 8140

Xc – 0.60


