PHY 517 / AST 443: Observational Techniques in Astronomy

Fall 2016, Anja von der Linden
Course Objectives

• introduction to observational astronomy

• design, take, analyze and interpret astronomical observations

• same concepts as needed for these:

Keck 10m telescopes

Hubble Space Telescope
Mt Stony Brook Observatory

- roof-top dome + telescope (14-inch) + CCD camera + spectrograph
Radio interferometer

• custom-built at Stony Brook

A Michelson-type radio interferometer for university education

Jin Koda, James Barrett, Gene Shafto, Jeff Slechta, Tetsuo Hasegawa, Masahiko Hayashi, and Stanimir Metchev

Citation: American Journal of Physics 84, 249 (2016); doi: 10.1119/1.4940212
How to be an astronomer

1. come up with an interesting idea / hypothesis
2. search for and analyze archival observations
3. write a telescope proposal
4. plan and execute your observations
5. analyze your data
6. write a journal paper
7. present your work at conferences
We’ll deviate a bit ...

1. conduct and analyze observations
2. lab report → journal paper
3. write a telescope proposal
4. serve on a Time Allocation Committee (TAC)
5. present your work in class
Grading

~75% labs (3 labs, i.e. ~25% each)
~10% project proposal
~10% final presentation
~5% evaluation of peers’ proposals and presentations
Course webpage

http://www.astro.sunysb.edu/anja/PHY517_AST443/

(might change to something more modern...)
Lab 1 - optical imaging; time-series photometry

- detect an exoplanet transit
Lab 2 - optical spectroscopy

- measure the gas temperature of a gaseous nebula
Lab 3 - radio interferometry

• measure the diameter of the Sun
Class structure

Officially:

• Mon + Wed 6-9pm

In practice:

• 0-2 lectures per week
• most important scheduling constraint is that you get to take your observations
• you need good weather for all labs
• for each optical lab: schedule target night + 1-2 back-up nights
• radio lab: schedule target day + 1-2 back-up days
• as needed: Mon / Wed evening data reduction help
Team work

- observational astronomy is done in teams
- you will work in teams of 3
- please form teams of 3 people by Wed next week
- please make sure that
 - at least one of you has some programming experience
 - at least one of you has a laptop
 - you are available on the same week-nights / days
Night-time observing

- a TA or instructor must be present (or in the building)
- please plan your observations to be done by ~ midnight
- bring:
 - WARM clothes!
 - a red flash-light / rear bike-light
 - a USB key to take your data home
 - all materials needed for the lab: instructions, finding charts, your notebook etc.
 - cookies / chocolate
TAs

Drew Jamieson <andrew.jamieson@stonybrook.edu>

Lucie Baumont <lucie.baumont@stonybrook.edu>
This is me. Tell me who you are!